Citation:
LI Hao, DENG Yong-Hong, ZHANG Xiao-Hong, QIU Xue-Qing. Influence of Temperature on Microstructure and Physicochemical Properties of Alkali Lignin in Aqueous Solution[J]. Acta Physico-Chimica Sinica,
;2015, 31(6): 1118-1128.
doi:
10.3866/PKU.WHXB201503271
-
The effects of temperature on the microstructure and physicochemical properties of alkali lignin (AL) in alkaline aqueous solutions were studied at 20-60 ℃. The relationships between temperature and the physicochemical properties of AL, such as the aggregation morphology, molecular surface charge and hydrophobicity, intrinsic viscosity, adsorption characteristics on gas-liquid and liquid- solid interfaces were investigated experimentally using particle charge detection, dynamic light scattering, zeta plus measurements, viscometry, surface tension and dynamic contact angle measurements, quartz crystal microbalance, ultravioletvisible and fluorescence spectroscopies. As the temperature increases, the molecular surface charge density, the intrinsic viscosity, and surface tension of the AL solution decrease significantly. In contrast, the molecular hydrophobicity, intermolecular and intramolecular aggregations, and the amount of AL adsorbed onto liquid-solid interface increase. The AL molecular state changes from extended to compact with increasing temperature. Furthermore, when the temperature increases, the absolute value of the zeta potential first decreases, then increases, and then decreases again. Analysis suggests that the increase in temperature not only reduces the ionization degree of the weak acidic groups in AL, but also weakens the hydrogen bonds between ALmolecules and water molecules. These two factors lead directly to changes in the AL microstructure and physicochemical properties. Based on the results of this study, a mechanism for the microstructural changes in AL with changing temperature was proposed. It was concluded that water would transform from a od solvent to a poor solvent with decreasing temperature. Although AL is often viewed as an anionic surfactant, the regular changes in its physicochemical properties with temperature are more like those of a nonionic surfactant.
-
-
-
[1]
(1) Sarkanen, S.; Teller, D. C.; Abramowski, E.; Mccarthy, J. L. Macromolecules 1982, 15, 1098. doi: 10.1021/ma00232a027
-
[2]
(2) Gupta, P. R.; ring, D. A. I. Can. J. Chem. 1960, 38, 248. doi: 10.1139/v60-034
-
[3]
(3) Shen, Q.; Rosenholm, J. B. Nord. Pulp. Pap. Res. J. 1998, 13, 206. doi: 10.3183/NPPRJ-1998-13-03-p206-210
-
[4]
(4) Yang, D. J.; Wu, X. L.; Qiu, X. Q.; Chang, Y. Q.; Lou, H. M. Bioresource Technol. 2014, 155, 418. doi: 10.1016/j.biortech.2013.12.017
-
[5]
(5) Lou, H. M.; Lai, H. R.; Wang, M. X.; Pang, Y. X.; Yang, D. J.; Qiu, X. Q.; Wang, B.; Zhang, H. B. Ind. Eng. Chem. Res. 2013, 52, 16101. doi: 10.1021/ie402169g
-
[6]
(6) Zhou, M. S.; Kong, Q.; Pan, B.; Qiu, X. Q.; Yang, D. J.; Lou, H. M. Fuel 2010, 89, 716. doi: 10.1016/j.fuel.2009.09.015
-
[7]
(7) Li, Z. L.; Pang, Y. X.; Ge, Y. Y.; Qiu, X. Q. J. Phys. Chem. C 2011, 115, 24865. doi: 10.1021/jp2083117
-
[8]
(8) Ouyang, X. P.; Qiu, X. Q.; Lou, H. M.; Yang, D. Ind. Eng. Chem. Res. 2006, 45, 5716. doi: 10.1021/ie0513189
-
[9]
(9) Lin, X. L.; Zhou, M. S.; Wang, S. Y.; Lou, H. M.; Yang, D. J.; Qiu, X. Q. ACS. Sustain. Chem. Eng. 2014, 7, 1902.
-
[10]
(10) Qiu, X. Q.; Li, H.; Deng, Y. H.; Yian, Y.; Yi, C. H. Acta Polym. Sin. 2014, No. 11, 1458. [邱学青, 李浩, 邓永红, 钱勇, 易聪华. 高分子学报, 2014, No. 11, 1458.]
-
[11]
(11) Nieminen, K.; Kuitunen, S.; Paananen, M.; Sixta, H. Ind. Eng. Chem. Res. 2014, 53, 2614. doi: 10.1021/ie4028928
-
[12]
(12) Zhu, W.; Westman, G.; Theliander, H. Holzforschung 2014, 69, 143. doi: 10.1515/hf-2014-0062.
-
[13]
(13) Wallberg, O.; Jönsson, A. Chem. Eng. Res. Des. 2003, 81, 1379. doi: 10.1205/026387603771339591
-
[14]
(14) Azadi, P.; Inderwildi, O. R.; Farnood, R.; King, D. A. Renew Sust Energ. Rev. 2013, 21, 506. doi: 10.1016/j.rser.2012.12.022
-
[15]
(15) Liu, L. T.; Zhang, B.; Li, J.; Ma, D.; Kou, Y. Acta Phys. -Chim. Sin. 2012, 28, 2343. [刘凌涛, 张斌, 李晶, 马丁, 寇元. 物理化学学报, 2012, 28, 2343.] doi: 10.3866/PKU.WHXB201206152
-
[16]
(16) Yu, W. F.; Meng, X. G.; Liu, Y.; Li, X. H. Acta Phys. -Chim. Sin. 2013, 29, 2041. [于卫峰, 孟祥光, 刘莹, 李小红. 物理化学学报. 2013, 29, 2041.] doi: 10.3866/PKU.WHXB201306282
-
[17]
(17) Ringena, O.; Lebioda, S.; Lehnen, R.; Saake, B. J. Chromatogr. A 2006, 1102, 154. doi: 10.1016/j.chroma.2005.10.037
-
[18]
(18) Wisniewska, M.; Chibowski, S.; Urban, T. Colloid Interface Sci. 2009, 334, 146. doi: 10.1016/j.jcis.2009.03.006
-
[19]
(19) Ariga, K.; Okahata, Y. Langmuir 1994, 10, 2272. doi: 10.1021/la00019a041
-
[20]
(20) Liu, G.; Zhang, G. J. Phys. Chem. B 2004, 109, 743.
-
[21]
(21) Nestler, P.; Block, S.; Helm, C. A. J. Phys. Chem. B 2012, 116, 1234. doi: 10.1021/jp208837m
-
[22]
(22) Petridis, L.; Schulz, R.; Smith, J. C. J. Am. Chem. Soc. 2011, 133, 20277. doi: 10.1021/ja206839u
-
[23]
(23) Li, H.; Deng, Y. H.; Qiu, X. Q. Acta Phys. -Chim. Sin. 2015, 31, 128. [李浩, 邓永红, 邱学青. 物理化学学报, 2015, 31, 128.] doi: 10.3866/PKU.WHXB201411062
-
[24]
(24) Vu, T.; Chaffee, A.; Yarovsky, I. Mol. Simulat. 2002, 28, 981. doi: 10.1080/089270204000002610
-
[25]
(25) Norgren, M.; Bergfors, E. Wood Sci. Technol. 2005, 39, 512. doi: 10.1007/s00226-005-0008-y
-
[26]
(26) Satyanarayana, S. V.; Bhattacharya, P. K.; De, S. Sep. Purif. Technol. 2000, 20, 155. doi: 10.1016/S1383-5866(00)00086-1
-
[27]
(27) Chauhan, S.; Chauhan, M. S.; Sharma, P.; Rana, D. S. J. Mol. Liq. 2013, 187, 1. doi: 10.1016/j.molliq.2013.06.001
-
[28]
(28) Zhao, L.; Yan, Y.; Huang, J. B. Acta Phys. -Chim. Sin. 2010, 26, 840. [赵莉, 阎云, 黄建滨. 物理化学学报, 2010, 26, 840.] doi: 10.3866/PKU.WHXB20100429
-
[29]
(29) Qiu, X. Q.; Li, H.; Deng, Y. H.; Ouyang, X. P. Acta Polym. Sin. 2014, No. 9, 1281. [邱学青, 李浩, 邓永红, 欧阳新平. 高分子学报, 2014, No. 9, 1281.]
-
[30]
(30) Deng, Y. H.; Feng, X. J.; Zhou, M. S.; Qian, Y.; Yu, H. F.; Qiu, X. Q. Biomacromolecules 2011, 12, 116.
-
[1]
-
-
-
[1]
Qiaoqiao BAI , Anqi ZHOU , Xiaowei LI , Tang LIU , Song LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128
-
[2]
Yuan Chun , Yongmei Liu , Fuping Tian , Hong Yuan , Shu'e Song , Wanchun Zhu , Yunchao Li , Zhongyun Wu , Xiaokui Wang , Yunshan Bai , Li Wang , Jianrong Zhang , Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement of Colloidal and Surface Chemical Properties, Molecular Structure and Properties. University Chemistry, 2025, 40(5): 178-188. doi: 10.12461/PKU.DXHX202503053
-
[3]
Wanchun Zhu , Yongmei Liu , Li Wang , Yunshan Bai , Shu'e Song , Xiaokui Wang , Zhongyun Wu , Hong Yuan , Yunchao Li , Fuping Tian , Yuan Chun , Jianrong Zhang , Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement and Control of Temperature. University Chemistry, 2025, 40(5): 128-136. doi: 10.12461/PKU.DXHX202503028
-
[4]
Shu'e Song , Xiaokui Wang , Yongmei Liu , Wanchun Zhu , Hong Yuan , Fuping Tian , Yunshan Bai , Yunchao Li , Li Wang , Zhongyun Wu , Yuan Chun , Jianrong Zhang , Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement of Viscosity, Density and Optical Properties. University Chemistry, 2025, 40(5): 148-156. doi: 10.12461/PKU.DXHX202503026
-
[5]
Fuping Tian , Yunshan Bai , Wanchun Zhu , Yufeng Li , Yongmei Liu , Shu'e Song , Hong Yuan , Zhongyun Wu , Li Wang , Xiaokui Wang , Yuan Chun , Jianrong Zhang , Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement of Thermal Properties. University Chemistry, 2025, 40(5): 157-164. doi: 10.12461/PKU.DXHX202503054
-
[6]
Yunchao Li , Hong Yuan , Yuan Chun , Xiaokui Wang , Fuping Tian , Yunshan Bai , Yongmei Liu , Wanchun Zhu , Shu'e Song , Zhongyun Wu , Li Wang , Yufeng Li , Jianrong Zhang , Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement of Electrical Properties. University Chemistry, 2025, 40(5): 165-177. doi: 10.12461/PKU.DXHX202503055
-
[7]
Pei Li , Yuenan Zheng , Zhankai Liu , An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012
-
[8]
Bing Sun . Practice of Ideological and Political Education in Physical Chemistry Courses for Non-Chemistry Majors. University Chemistry, 2024, 39(8): 28-35. doi: 10.3866/PKU.DXHX202311080
-
[9]
Tongqi Ye , Qi Wang , Yuewen Ye , Yanqing Wang , Hongyang Zhou , Xianghua Kong . Reflection on the Reform of Physical Chemistry Teaching under the Background of “Intelligent Chemical Engineering”. University Chemistry, 2024, 39(3): 167-173. doi: 10.3866/PKU.DXHX202308116
-
[10]
Hongmei Zhao , Ziqiang Lu , Song Li , Xingyu Li , Chengting Zi , Xingli Fan , Xiangdong Qin . Exploration and Practice of Physical Chemistry Teaching under the Guidance of Course Ideological and Political Education. University Chemistry, 2024, 39(3): 210-217. doi: 10.3866/PKU.DXHX202309006
-
[11]
Youjun Fan , Dandan Cai , Wei Chen , Jianhua Qiu . Exploration and Practice of Ideological and Political Education Reform in Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 119-124. doi: 10.3866/PKU.DXHX202310123
-
[12]
Jianmin Hao , Ruifeng Wu , Ying Wang , Yijia Bai , Xuechuan Gao , Yuying Du . Reform and Practice of Physical Chemistry Course Based on Enhanced Process Assessment and Evaluation. University Chemistry, 2024, 39(8): 78-83. doi: 10.3866/PKU.DXHX202311103
-
[13]
Xu Liu , Chengfang Liu , Jie Huang , Xiangchun Li , Wenyong Lai . Research on the Application of Diversified Teaching Models in the Teaching of Physical Chemistry. University Chemistry, 2024, 39(8): 112-118. doi: 10.3866/PKU.DXHX202402021
-
[14]
Ruming Yuan , Laiying Zhang , Xiaoming Xu , Pingping Wu , Gang Fu . Application of Mathematica in Visualizing Physical Chemistry Formulas. University Chemistry, 2024, 39(8): 375-382. doi: 10.3866/PKU.DXHX202401030
-
[15]
Congyi Wu . Advice for Young Teachers to Promote Teaching Level of Physical Chemistry. University Chemistry, 2024, 39(11): 15-19. doi: 10.3866/PKU.DXHX202402054
-
[16]
Rong Zhang , Yufang Pan , Sanlai Luo , Dan Wang . Exploration and Practice of Teaching Reform in Physical Chemistry for Pharmacy Majors. University Chemistry, 2025, 40(4): 166-173. doi: 10.12461/PKU.DXHX202406101
-
[17]
Zhongyun Wu , Li Wang , Xiaokui Wang , Wanchun Zhu , Yuan Chun , Fuping Tian , Yongmei Liu , Yunshan Bai , Hong Yuan , Yufeng Li , Shu'e Song , Jianrong Zhang , Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement and Control of Pressure. University Chemistry, 2025, 40(5): 137-147. doi: 10.12461/PKU.DXHX202503027
-
[18]
Meirong Cui , Mo Xie , Jie Chao . Design and Reflections on the Integration of Artificial Intelligence in Physical Chemistry Laboratory Courses. University Chemistry, 2025, 40(5): 291-300. doi: 10.12461/PKU.DXHX202412015
-
[19]
Mingxin LU , Liyang ZHOU , Xiaoyu XU , Xiaoying FENG , Hui WANG , Bin YAN , Jie XU , Chao CHEN , Hui MEI , Feng GAO . Preparation of La-doped lead-based piezoelectric ceramics with both high electrical strain and Curie temperature. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 329-338. doi: 10.11862/CJIC.20240206
-
[20]
Jia Yao , Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117
-
[1]
Metrics
- PDF Downloads(353)
- Abstract views(1046)
- HTML views(57)