Citation:
SUN Zhong-Fa, GAO Zhi, WU Xiang-Kun, TANG Guo-Qiang, ZHOU Xiao-Guo, LIU Shi-Lin. Excitation Spectra and Photodissociation Dynamics of the B2П State of the N2O+ Ion[J]. Acta Physico-Chimica Sinica,
;2015, 31(5): 829-835.
doi:
10.3866/PKU.WHXB201503041
-
N2O+ ions in the X2П(0,0,0) ground state were prepared by (3+1) resonance-enhanced multiphoton ionization (REMPI) of jet-cooled N2O molecules at 360.55 nm, and then photoexcited to various vibrational levels in the B2П state over a wavelength range of 243-278 nm, followed by dissociation. The photofragment excitation (PHOFEX) spectrum was recorded by measuring the intensity of NO+ ion fragments vs excitation wavelength. The rotational constants and spin-orbit coupling were obtained by fitting the rotational structures of the vibrational bands. Thus, the contributions of highly excited vibronic levels of A2Σ+ states were distinguished from the other bands, and the original band of B2П state was verified. The series of vibrational bands in the PHOFEX spectrum were assigned to the transition of B2П(v1,v2,v3) ←X2П. The average released kinetic energy of dissociation from the various B2П(v1,v2,v3) ionic states was obtained by fitting the spreading contour of the NO+ ion peak in time-of-flight mass spectra. Dissociation mechanisms of N2O+(B2П) were proposed with the aid of the theoretical potential energy surfaces of N2O+ ions.
-
-
-
[1]
(1) Burley, J. D.; Ervin, K. M.; Armentrout, P. B. J. Chem. Phys. 1987, 86, 1944. doi: 10.1063/1.452144
-
[2]
(2) Hopper, D. G. J. Am. Chem. Soc. 1978, 100, 1019. doi: 10.1021/ja00472a001
-
[3]
(3) Komiha, N. J. Mol. Struc. -Theochem1994, 112, 313.
-
[4]
(4) Li, X.; Huang, Y. L.; Flesch, G. D.; Ng, C. Y. J. Chem. Phys. 1997, 106, 1373. doi: 10.1063/1.474087
-
[5]
(5) Danis, P. O.; Wyttenbach, T.; Maier, J. P. J. Chem. Phys. 1988, 88, 3451. doi: 10.1063/1.453893
-
[6]
(6) Patsilinakou, E.; Wiedmann, R. T.; Fotakis, C.; Grant, E. R. J. Chem. Phys. 1989, 91, 3916. doi: 10.1063/1.456823
-
[7]
(7) Scheper, C. R.; Kuijt, J.; Buma, W. J.; de Lange, C. A. J. Chem. Phys. 1998, 109, 7844. doi: 10.1063/1.477431
-
[8]
(8) Szarka, M. G.; Wallace, S. C. J. Chem. Phys. 1991, 95, 2336. doi: 10.1063/1.460940
-
[9]
(9) Dehmer, P. M.; Dehmer, J. L.; Chupka, W. A. J. Chem. Phys. 1980, 73, 126. doi: 10.1063/1.439906
-
[10]
(10) Locht, R.; Caprace, G.; Momigny, J. Chem. Phys. Lett.1984, 111, 560. doi: 10.1016/0009-2614(84)80271-7
-
[11]
(11) Turner, D.W.; May, D. P. J. Chem. Phys. 1967, 46, 1156. doi: 10.1063/1.1840783
-
[12]
(12) Weiss, M. J. Chem. Phys. Lett. 1976, 39, 250. doi: 10.1016/0009-2614(76)80066-8
-
[13]
(13) Chen, W.W.; Liu, J. B.; Ng, C. Y. J. Phys. Chem. A 2003, 107, 8086. doi: 10.1021/jp022389d
-
[14]
(14) Wiedmann, R. T.; Grant, E. R.; Tonkyn, R. G.; White, M. G. J. Chem. Phys. 1991, 95, 746. doi: 10.1063/1.461080
-
[15]
(15) Kong, W.; Rodgers, D.; Hepburn, J.W. Chem. Phys. Lett. 1994, 221, 301. doi: 10.1016/0009-2614(94)00260-6
-
[16]
(16) Kinmond, E.; Eland, J. H. D.; Karlsson, L. Int. J. Mass Spectrom. 1999, 185, 437.
-
[17]
(17) Tang, X. F.; Niu, M. L.; Zhou, X. G.; Liu, S. L.; Liu, F. Y.; Shan, X. B.; Sheng, L. S. J. Chem. Phys. 2011, 134, 054312. doi: 10.1063/1.3549130
-
[18]
(18) Richardviard, M.; Delboulbe, A.; Vervloet, M. Chem. Phys. 1996, 209, 159. doi: 10.1016/0301-0104(96)00164-4
-
[19]
(19) Nenner, I.; Guyon, P. M.; Baer, T.; vers, T. R. J. Chem. Phys. 1980, 72, 6587. doi: 10.1063/1.439115
-
[20]
(20) Chiang, S. Y.; Ma, C. I. J. Phys. Chem. A 2000, 104, 1991. doi: 10.1021/jp9935081
-
[21]
(21) Richardviard, M.; Atabek, O.; Dutuit, O.; Guyon, P. M. J. Chem. Phys. 1990, 93, 8881. doi: 10.1063/1.459227
-
[22]
(22) Xu, H. F.; Li, Q. F.; Zhou, X. G.; Dai, J. H.; Liu, S. L.; Ma, X. X. Acta Phys. Sin. 2004, 53, 1759. [徐海峰, 李奇峰, 周晓国, 戴静华, 刘世林, 马兴孝. 物理学报, 2004, 53, 1759.]
-
[23]
(23) Xu, H. F.; Guo, Y.; Li, Q. F.; Shi, Y.; Liu, S. L.; Ma, X. X. J. Chem. Phys. 2004, 121, 3069. doi: 10.1063/1.1772363
-
[24]
(24) Xu, H. F.; Guo, Y.; Li, Q. F.; Liu, S. L.; Ma, X. X.; Liang, J.; Li, H. Y. J. Chem. Phys. 2003, 119, 11609. doi: 10.1063/1.1624596
-
[25]
(25) Wang, H.; Zhou, X. G.; Liu, S. L.; Jiang, B.; Dai, D. X.; Yang, X. M. J. Chem. Phys. 2010, 132, 244309. doi: 10.1063/1.3457945
-
[26]
(26) Wang, H.; Liu, S. L.; Liu, J.; Wang, F. Y.; Jiang, B.; Yang, X. M. Acta Phys. Sin. 2008, 57, 796. [汪华, 刘世林, 刘杰, 王凤燕, 姜波, 杨学明. 物理学报, 2008, 57, 796.]
-
[27]
(27) Xu, H. F.; Guo, Y.; Li, Q. F.; Dai, J. H.; Liu, S. L.; Ma, X. X.; Liang, J.; Li, H. Y. Acta Phys. Sin. 2004, 53, 1027. [徐海峰, 郭颖, 李奇峰, 戴静华, 刘世林, 马兴孝, 梁军, 李海洋. 物理学报, 2004, 53, 1027.]
-
[28]
(28) Brundle, C.; Turner, D. Int. J. Mass Spectrom. Ion Phys. 1969, 2, 195. doi: 10.1016/0020-7381(69)80018-5
-
[29]
(29) Lorquet, A. J.; Lorquet, J. C.; Wankenne, H.; Momigny, J.; Lefebvre, H. J. Chem. Phys. 1971, 55, 4053. doi: 10.1063/1.1676699
-
[30]
(30) Koppel, H.; Cederbaum, L. S.; Domcke, W. Chem. Phys. 1982, 69, 175. doi: 10.1016/0301-0104(82)88144-5
-
[31]
(31) Cvitas, T.; Klasinc, L.; Kovac, B.; McDiarmid, R. J. Chem. Phys. 1983, 79, 1565. doi: 10.1063/1.446028
-
[32]
(32) Lebech, M.; Houver, J. C.; Dowek, D.; Lucchese, R. R. J. Chem. Phys. 2004, 120, 8226. doi: 10.1063/1.1651087
-
[33]
(33) Tang, X. F.; Zhou, X. G.; Niu, M. L.; Liu, S. L.; Sun, J. D.; Shan, X. B.; Liu, F. Y.; Sheng, L. S. Rev. Sci. Inst. 2009, 80, 113101. doi: 10.1063/1.3250872
-
[34]
(34) Imamura, T.; Imajo, T.; Koyano, I. J. Phys. Chem. 1995, 99, 15465. doi: 10.1021/j100042a020
-
[35]
(35) Lerme, J.; Abed, S.; Holt, R. A.; Larzilliere, M.; Carre, M. Chem. Phys. Lett 1983, 96, 403. doi: 10.1016/0009-2614(83)80717-9
-
[36]
(36) Tokue, I.; Kobayashi, M.; Ito, Y. J. Chem. Phys. 1992, 96, 7458.
-
[37]
(37) Frey, R.; tchev, B.; Peatman, W. B.; Pollak, H.; Schlag, E.W. Chem. Phys. Lett. 1978, 54, 411. doi: 10.1016/0009-2614(78)85250-6
-
[38]
(38) Callomon, J. H.; Creutzbe, F. Phil. Trans. R. Soc. A 1974, 277, 157. doi: 10.1098/rsta.1974.0048
-
[39]
(39) Hill, E.; Van Vleck, J. H. Phys. Rev. 1928, 32, 0250. doi: 10.1103/PhysRev.32.250
-
[40]
(40) Mulliken, R. S. Rev. Mod. Phys. 1930, 2, 0060. doi: 10.1103/RevModPhys.2.60
-
[41]
(41) Wang, H. Ion Velocity Imaging Studies on Photodissociation Dynamics of Small Molecules. Ph. D. Dissertation, University of Science and Technology of China, Hefei, 2007. [汪华. 基于离子速度成像技术的小分子光解动力学研究[D]. 合肥: 中国科学技术大学, 2007.]
-
[42]
(42) Aarts, J. F. M.; Callomon, J. H. Mol. Phys. 1987, 62, 637. doi: 10.1080/00268978700102451
-
[43]
(43) Wang, H. F. Ion Velocity Imaging Studies on Photodissociation Dynamics of Small Molecules. Ph. D. Dissertation, University of Science and Technology of China, Hefei, 2007. [徐海峰. CH2I2分子和N2O+离子的光解离动力学研究[D]. 合肥: 中国科学技术大学, 2002.]
-
[44]
(44) Chambaud, G.; Gritli, H.; Rosmus, P.; Werner, H. J.; Knowles, P. J. Mol. Phys. 2000, 98, 1793.
-
[1]
-
-
-
[1]
Zian Lin , Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066
-
[2]
Tieping CAO , Yuejun LI , Dawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366
-
[3]
Hao Wu , Zhen Liu , Dachang Bai . 1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020
-
[4]
Zhuomin Zhang , Hanbing Huang , Liangqiu Lin , Jingsong Liu , Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034
-
[5]
Qi Wu , Changhua Wang , Yingying Li , Xintong Zhang . Enhanced photocatalytic synthesis of H2O2 by triplet electron transfer at g-C3N4@BN van der Waals heterojunction interface. Acta Physico-Chimica Sinica, 2025, 41(9): 100107-0. doi: 10.1016/j.actphy.2025.100107
-
[6]
Yufan ZHAO , Jinglin YOU , Shixiang WANG , Guopeng LIU , Xiang XIA , Yingfang XIE , Meiqin SHENG , Feiyan XU , Kai TANG , Liming LU . Raman spectroscopic quantitative study of the melt microstructure in binary Li2O-GeO2 functional crystals. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1533-1544. doi: 10.11862/CJIC.20250063
-
[7]
Min WANG , Dehua XIN , Yaning SHI , Wenyao ZHU , Yuanqun ZHANG , Wei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477
-
[8]
Heng Chen , Longhui Nie , Kai Xu , Yiqiong Yang , Caihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019
-
[9]
Qianqian Liu , Xing Du , Wanfei Li , Wei-Lin Dai , Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-0. doi: 10.3866/PKU.WHXB202311016
-
[10]
Yi Yang , Xin Zhou , Miaoli Gu , Bei Cheng , Zhen Wu , Jianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-0. doi: 10.1016/j.actphy.2025.100064
-
[11]
Supin Zhao , Jing Xie . Understanding the Vibrational Stark Effect of Water Molecules Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 178-185. doi: 10.12461/PKU.DXHX202406024
-
[12]
Xi YANG , Chunxiang CHANG , Yingpeng XIE , Yang LI , Yuhui CHEN , Borao WANG , Ludong YI , Zhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371
-
[13]
Liang MA , Honghua ZHANG , Weilu ZHENG , Aoqi YOU , Zhiyong OUYANG , Junjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075
-
[14]
Kexin Dong , Chuqi Shen , Ruyu Yan , Yanping Liu , Chunqiang Zhuang , Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-0. doi: 10.3866/PKU.WHXB202310013
-
[15]
Xiaowu Zhang , Pai Liu , Qishen Huang , Shufeng Pang , Zhiming Gao , Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021
-
[16]
Yingran Liang , Fei Wang , Jiabao Sun , Hongtao Zheng , Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024
-
[17]
Zhuoming Liang , Ming Chen , Zhiwen Zheng , Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029
-
[18]
Xiaofang Li , Zhigang Wang . 调节金助催化剂的dz2占据轨道增强光催化合成H2O2. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-0. doi: 10.1016/j.actphy.2025.100080
-
[19]
Wenjuan Tan , Yong Ye , Xiujuan Sun , Bei Liu , Jiajia Zhou , Hailong Liao , Xiulin Wu , Rui Ding , Enhui Liu , Ping Gao . Building P-Poor Ni2P and P-Rich CoP3 Heterojunction Structure with Cation Vacancy for Enhanced Electrocatalytic Hydrazine and Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(6): 2306054-0. doi: 10.3866/PKU.WHXB202306054
-
[20]
Xinyu Yin , Haiyang Shi , Yu Wang , Xuefei Wang , Ping Wang , Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-0. doi: 10.3866/PKU.WHXB202312007
-
[1]
Metrics
- PDF Downloads(219)
- Abstract views(532)
- HTML views(31)