Citation: HU Li-Mei, LIN Cun-Guo, WANG Li, YUAN Shi-Ling. Lysozyme Protein Adsorbed on Antifouling Polymer Film Surface[J]. Acta Physico-Chimica Sinica, ;2014, 30(11): 2149-2156. doi: 10.3866/PKU.WHXB201409021 shu

Lysozyme Protein Adsorbed on Antifouling Polymer Film Surface

  • Received Date: 31 July 2014
    Available Online: 2 September 2014

    Fund Project: 国家重点基础研究发展规划项目(973) (2014CB643305)资助 (973) (2014CB643305)

  • Molecular dynamics simulations were used to compare the adsorption behavior of lysozyme on two typical antifouling polymer materials: poly(ethylene) glycol (PEG) and poly(dimethylsiloxane) (PDMS). The influence of the surface properties of the polymer films on protein adsorption is discussed at the microscale. Based on the interactions, energy changes between the protein and polymer films, and dynamical behavior of the hydration molecules near the polymer film, the reasons why the PEG antifouling coating has a better antifouling effect than the PDMS surface were determined as follows. (1) The lower binding energy between the protein and the PEG coating than between the protein and the PDMS coating makes the protein adsorb weaker on the PEG coating than on the PDMS coating. (2) The protein would adsorb on the film surface when overcoming the energy barrier caused by the hydration layer. Molecular water adsorbs on the PEG surface stronger than on the PDMS surface, and is difficult to desorb. Therefore, the protein needs to overcome a higher energy barrier to adsorb to the PEG surface than to the PDMS surface, and thus it is more difficult for protein to absorb on the PEG surface than on the PDMS surface.

  • 加载中
    1. [1]

      (1) Ostuni, E.; Chapman, R. G.; Holmlin, R. K.; Takayama, S.; Whitesides, G. M. Langmuir 2001, 17, 5605. doi: 10.1021/la010384m

    2. [2]

      (2) Shen, M. C.; Martinson, L.;Wagner, M. S.; Castner, D. G.; Ratner, B. D.; Horbett, T. A. J. Biomater. Sci. Polym. Ed. 2002, 13, 367. doi: 10.1163/156856202320253910

    3. [3]

      (3) Chambers, L. D.; Stokes, K. R.;Walsh, F. C.;Wood, R. J. Surface and Coatings Technology 2006, 201 (6), 364.

    4. [4]

      (4) Zheng, J.; Li, L.; Chen, S.; Jiang, S. Langmuir 2004, 20 (20), 8931. doi: 10.1021/la036345n

    5. [5]

      (5) Cedervall, T.; Lynch, I.; Foy, M.; Berggård, T.; Donnelly, S. C.; Cagney, G.; Dawson, K. A. Angewandte Chemie International Edition 2007, 46 (30), 5754.

    6. [6]

      (6) Aggarwal, P.; Hall, J. B.; McLeland, C. B.; Dobrovolskaia, M. A.; McNeil, S. E. Advanced Drug Delivery Reviews 2009, 61 (6), 428. doi: 10.1016/j.addr.2009.03.009

    7. [7]

      (7) Kitano, H.; Sudo, K.; Ichikawa, K.; Ide, M.; Ishihara, K. The Journal of Physical Chemistry B 2000, 104 (47), 11425. doi: 10.1021/jp000429c

    8. [8]

      (8) Zheng, H. R.;Wang, X.W.; Lin, X. H.; Geng, Q.; Chen, X.; Dai,W. X.;Wang, X. X. Acta Phys. -Chim. Sin. 2012, 28, 1764. [郑华荣, 王晓韡, 林霞晖, 耿强, 陈旬, 戴文新, 王绪绪. 物理化学学报, 2012, 28, 1764.] doi: 10.3866/PKU.WHXB201205112

    9. [9]

      (9) Lüsse, S.; Arnold, K. Macromolecules 1996, 29 (12), 4251. doi: 10.1021/ma9508616

    10. [10]

      (10) Wang, Y. Q.;Wang, T.; Su, Y. L.; Peng, F. B.;Wu, H.; Jiang, Z. Y. Langmuir 2005, 21 (25), 11856. doi: 10.1021/la052052d

    11. [11]

      (11) Zhao,W.; Su, Y.; Li, C.; Shi, Q.; Ning, X.; Jiang, Z. Journal of Membrane Science 2008, 318 (1), 405.

    12. [12]

      (12) Chen, H.; Yuan, L.; Song,W.;Wu, Z.; Li, D. Progress in Polymer Science 2008, 33 (11), 1059. doi: 10.1016/j.progpolymsci.2008.07.006

    13. [13]

      (13) Michalkova, A.; Tulyani, S.; Beals, J.; Leszczynski, J. Journal of Molecular Modeling 2012, 18 (1), 239. doi: 10.1007/s00894-011-1058-8

    14. [14]

      (14) Shen, J.W.;Wu, T.;Wang, Q.; Pan, H. H. Biomaterials 2008, 29 (5), 513. doi: 10.1016/j.biomaterials.2007.10.016

    15. [15]

      (15) Bai, S.; Li, H.; Zhang, L. Acta Phys. -Chim. Sin. 2013, 29, 849. [白姝, 李浩, 张麟. 物理化学学报, 2013, 29, 849.] doi: 10.3866/PKU.WHXB201301182

    16. [16]

      (16) Fang, Y. Y.; Hu, X. G.; Yu, L.; Li,W. B.; Lin, R. S. Acta Phys. -Chim. Sin. 2007, 23, 84. [方盈盈, 胡新根, 于丽, 李文兵, 林瑞森. 物理化学学报, 2007, 23, 84.] doi: 10.3866/PKU.WHXB20070117

    17. [17]

      (17) Panos, M.; Sen, T. Z.; Ahunbay, M. G. Langmuir 2012, 28 (34), 12619. doi: 10.1021/la301546v

    18. [18]

      (18) Schuler, L. D.; Daura, X.; Van Gunsteren,W. F. Journal of Computational Chemistry 2001, 22 (11), 1205.

    19. [19]

      (19) Van der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A. E.; Berendsen, H. J. Journal of Computational Chemistry 2005, 26 (16), 1701.

    20. [20]

      (20) Hess, B.; Kutzner, C.; Van der Spoel, D.; Lindahl, E. Journal of Chemical Theory and Computation 2008, 4 (3), 435. doi: 10.1021/ct700301q

    21. [21]

      (21) Lindahl, E.; Hess, B.; Van der Spoel, D. Molecular Modeling Annual 2001, 7 (8), 306.

    22. [22]

      (22) Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; Lee, H.; Pedersen, L. G. The Journal of Chemical Physics 1995, 103 (19), 8577. doi: 10.1063/1.470117

    23. [23]

      (23) Berendsen, H. J.; Postma, J. P. M.; van Gunsteren,W. F.; DiNola, A. R. H. J.; Haak, J. R. The Journal of Chemical Physics 1984, 81 (8), 3684. doi: 10.1063/1.448118

    24. [24]

      (24) Hess, B.; Bekker, H.; Berendsen, H. J.; Fraaije, J. G. Journal of Computational Chemistry 1997, 18 (12), 1463.

    25. [25]

      (25) Dismer, F.; Hubbuch, J. Journal of Chromatography A 2007, 1149 (2), 312. doi: 10.1016/j.chroma.2007.03.074

    26. [26]

      (26) Hower, J. C.; He, Y.; Bernards, M. T.; Jiang, S. The Journal of Chemical Physics 2006, 125 (21), 214704. doi: 10.1063/1.2397681

    27. [27]

      (27) Vanderah, D. J.; La, H.; Naff, J.; Silin, V.; Rubinson, K. A. Journal of the American Chemical Society 2004, 126 (42), 13639. doi: 10.1021/ja047744n

    28. [28]

      (28) Shao, Q.; He, Y.; White, A. D.; Jiang, S. The Journal of Physical Chemistry B 2010, 114 (49), 16625. doi: 10.1021/jp107272n

    29. [29]

      (29) He, Y.; Hower, J.; Chen, S.; Bernards, M. T.; Chang, Y.; Jiang, S. Langmuir 2008, 24 (18), 10358. doi: 10.1021/la8013046

    30. [30]

      (30) He, Y.; Chang, Y.; Hower, J. C.; Zheng, J.; Chen, S.; Jiang, S. Physical Chemistry Chemical Physics 2008, 10 (36),5539. doi: 10.1039/b807129b


  • 加载中
    1. [1]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    2. [2]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    3. [3]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    4. [4]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    5. [5]

      Yingtong Shi Guotong Xu Guizeng Liang Di Lan Siyuan Zhang Yanru Wang Daohao Li Guanglei Wu . PEG-VN modified PP separator for high-stability and high-efficiency lithium-sulfur batteries. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-. doi: 10.1016/j.actphy.2025.100082

    6. [6]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    7. [7]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    8. [8]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    9. [9]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    10. [10]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    11. [11]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    12. [12]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    13. [13]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    14. [14]

      Hongxia Yan Rui Wu Weixu Feng Yan Zhao Yi Yan . Innovation Inspired by Classical Chemistry: Luminescent Hyperbranched Polysiloxanes. University Chemistry, 2025, 40(4): 154-159. doi: 10.12461/PKU.DXHX202409010

    15. [15]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    16. [16]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    17. [17]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    18. [18]

      Haiyu Zhu Zhuoqun Wen Wen Xiong Xingzhan Wei Zhi Wang . Accurate and efficient prediction of Schottky barrier heights in 2D semimetal/silicon heterojunctions. Acta Physico-Chimica Sinica, 2025, 41(7): 100078-. doi: 10.1016/j.actphy.2025.100078

    19. [19]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    20. [20]

      Runhua Chen Qiong Wu Jingchen Luo Xiaolong Zu Shan Zhu Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052

Metrics
  • PDF Downloads(501)
  • Abstract views(671)
  • HTML views(57)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return