Citation: CUI Jian- ng, ZHANG Xia, YAN Xin, LI Jun-Shuai, HUANG Yong-Qing, REN Xiao-Min. Electronic Structure Modulation of GaAs Nanowires by Surface Modification[J]. Acta Physico-Chimica Sinica, ;2014, 30(10): 1841-1846. doi: 10.3866/PKU.WHXB201408042 shu

Electronic Structure Modulation of GaAs Nanowires by Surface Modification

  • Received Date: 26 May 2014
    Available Online: 4 August 2014

    Fund Project:

  • The electronic structure tailoring of GaAs nanowires through surface modification was investigated by first-principles calculations. The effect of different surface-passivation materials (H, F, Cl, Br, and I) on the electronic structure of the GaAs nanowires was studied. The results show that for different atoms, the tailoring of the electronic structure is mainly determined by their passivation ability. The surface modification tunes the bandgap and also the bandgap types. The electronic structure of the GaAs nanowires was determined by the surface states and the quantum-confinement effect jointly. The amplitude of the bandgap variation on the diameter is different for the GaAs nanowires modified with different materials. Surface modification offers a new way to tailor the bandgap of GaAs nanowires without changing their diameter or crystal structure.

  • 加载中
    1. [1]

      (1) Yang, P.; Yan, R.; Fardy, M. Nano Lett. 2010, 10, 1529. doi: 10.1021/nl100665r

    2. [2]

      (2) Huang, H.; Ren, X.; Ye, X.; Guo, J.;Wang, Q.; Yang, Y.; Cai, S.; Huang, Y. Nano Lett. 2010, 10, 64. doi: 10.1021/nl902842g

    3. [3]

      (3) Tsakalakos, L.; Balch, J.; Fronheiser, J.; Korevaar, B. A.; Sulima, O.; Rand, J. Appl. Phys. Lett. 2007, 91, 233117. doi: 10.1063/1.2821113

    4. [4]

      (4) Duan, X.; Huang, Y.; Agarwal, R.; Lieber, M. Nature 2003, 421, 241. doi: 10.1038/nature01353

    5. [5]

      (5) Chuang, L. C.; Sedgwick, F. G.; Chen, R.; Ko,W. S.; Moewe, M.; Ng, K.W.; Tran, T. T.; Chang-Hasnain, C. Nano Lett. 2011, 11, 385. doi: 10.1021/nl102988w

    6. [6]

      (6) Lu,W.; Lieber, C. M. J. Phys. D: Appl. Phys. 2006, 39, R387. (7) Wang, N.; Cai, Y.; Zhang, R. Q. Mat. Sci. Eng. R 2008, 60, 1. doi: 10.1016/j.mser.2008.01.001

    7. [7]

      (8) Ye, X.; Huang, H.; Ren, X. M.; Guo, J.W.; Huang, Y. Q.;Wang, Q.; Zhang, X. Acta. Phys. Sin. 2010, 60, 036103. [叶显,黄辉, 任晓敏, 郭经纬, 黄永清, 王琦, 张霞. 物理学报, 2010, 60, 036103.] (9) Cui, J. G.; Zhang, X.; Yan, X.; Li, J. S.; Huang, Y. Q.; Ren, X. M. Physica B 2014, 452, 31. doi: 10.1016/j.physb.2014.07.006

    8. [8]

      (10) Cui, J. G.; Zhang, X.; Yan, X.; Li, J. S.; Huang, Y. Q.; Ren, X. M. Acta. Phys. Sin. 2014, 63, 136103. [崔建功, 张霞, 颜鑫, 李军帅, 黄永清, 任晓敏. 物理学报, 2014, 63, 136103.] (11) Dionízio, M.; Venezuela, P.; Miwa, R. H. Nanotechnology 2010, 21, 285204. doi: 10.1088/0957-4484/21/28/285204

    9. [9]

      (12) Shu, H. B.; Chen, X. S.; Zhou, X. H.; Lu,W. J. Phys. Chem. C 2010, 114, 17514. doi: 10.1021/jp105949z

    10. [10]

      (13) Liao, Z.; Liu, K.; Zhang, J.; Xu, J.; Yu, D. Phys. Lett. A 2007, 367, 207. doi: 10.1016/j.physleta.2007.03.006

    11. [11]

      (14) Sun, M. H.; Joyce, H. J.; Gao, Q.; Tan, H. H.; Jagadish, C.; Ning, C. Z. Nano Lett. 2012, 12, 3378. doi: 10.1021/nl300015w

    12. [12]

      (15) Akiyama, T.; Nakamura, K.; Ito, T. Phys. Rev. B 2006, 73, 235308. doi: 10.1103/PhysRevB.73.235308

    13. [13]

      (16) Kagimura, R.; Nunes, R.W.; Chacham, H. Phys. Rev. Lett. 2007, 98, 026801. doi: 10.1103/PhysRevLett.98.026801

    14. [14]

      (17) Collins, G.; Fleming, P.; Barth, S.; Dwyer, C. O.; Boland, J. J.; Morris, M. A.; Holmes, J. D. Chem. Mater. 2010, 22, 6370. doi: 10.1021/cm1023986

    15. [15]

      (18) Huang, S. P.; Xu, H.; Bello, I.; Zhang, R. Q. J. Phys. Chem. C 2010, 114, 8861. (19) Leu, P.W.; Shan, B.; Cho, K. Phys. Rev. B 2006, 73, 195320. doi: 10.1103/PhysRevB.73.195320

    16. [16]

      (20) Shu, H. B.; Liang, P.;Wang, L.; Chen, X. S.; Lu,W. J. Appl. Phys. 2011, 110, 103713. (21) Ning, F.; Tang, L. M.; Zhang, Y.; Chen, K. Q. J. Appl. Phys. 2013, 114, 224304. doi: 10.1063/1.4842735

    17. [17]

      (22) Liang,W. H.;Wang, X. L.; Ding, X. C.; Chu, L. Z.; Deng, Z. C.; Fu, G. S.;Wang, Y. L. Acta Phys. -Chim. Sin. 2011, 27, 1615. [梁伟华, 王秀丽, 丁学成, 褚立志, 邓泽超, 傅广生, 王英龙. 物理化学学报, 2011, 27, 1615.] doi: 10.3866/PKU.WHXB20110729

    18. [18]

      (23) Zhang, F. C.; Zhang,W. H.; Dong, J. T.; Zhang, Z. Y. Acta Phys. -Chim. Sin. 2011, 27, 2326. [张富春, 张威虎, 董军堂,张志勇. 物理化学学报, 2011, 27, 2326.] doi: 10.3866/PKU.WHXB20111016

    19. [19]

      (24) Cao, A.; Sudhölter, E. J .R.; de Smet, L. C. P. M. Sensors 2014, 14, 245. (25) Segall, M. D.; Lindan, P. J. D.; Probert, M. J.; Pickard, C. J.; Hasnip, P. J.; Clark, S. J.; Payne, M. C. J. Phys: Condens. Matter. 2002, 14, 2717. doi: 10.1088/0953-8984/14/11/301

    20. [20]

      (26) Perdew, J. P.; Zunger, A. Phys. Rev. B 1981, 23, 5048. (27) Monkhorst, H. J.; Pack, J. D. Phys. Rev. B.1976, 13, 5188. doi: 10.1103/PhysRevB.13.5188

    21. [21]

      (28) Shi, H.; Duan, Y. Phys. Lett. A 2008, 373, 165. doi: 10.1016/j.physleta.2008.11.010

    22. [22]

      (29) Cahangirov, S.; Ciraci, S. Phys. Rev. B 2009, 79, 165118. doi: 10.1103/PhysRevB.79.165118

    23. [23]

      (30) Lu, P.; Cao, H.; Zhang, X.; Yu, Z.; Cai, N.; Gao, T.;Wang, S. Physica E 2013, 52, 34. doi: 10.1016/j.physe.2013.03.025

    24. [24]

      (31) Shen, Y.; Lu, P. F.; Yu, Z. Y.; Zhan, L.; Ye, H.; Liu, Y. M.; Yuan, G. F. Commun. Theor. Phys. 2011, 55, 693. doi: 10.1088/0253-6102/55/4/34

    25. [25]

      (32) Hirshfeld, F. L. Theoret. Chim. Acta 1977, 44, 129. doi: 10.1007/BF00549096

    26. [26]

      (33) Peng, X.; Copple, A. Phys. Rev. B 2013, 87, 115308. doi: 10.1103/PhysRevB.87.115308

    27. [27]

      (34) Copple, A.; Ralston, N.; Peng, X. H. Appl. Phys. Lett. 2012, 100, 193108. doi: 10.1063/1.4718026

    28. [28]

      (35) Vo, T.;Williamson, A. J.; Galli, G. Phys. Rev. B 2006, 74, 045116.


  • 加载中
    1. [1]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    2. [2]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    3. [3]

      Huanhuan XIEYingnan SONGLei LI . Two-dimensional single-layer BiOI nanosheets: Lattice thermal conductivity and phonon transport mechanism. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 702-708. doi: 10.11862/CJIC.20240281

    4. [4]

      Xianfei Chen Wentao Zhang Haiying Du . Experimental Design of Computational Materials Science Based on Scientific Research Cases. University Chemistry, 2025, 40(3): 52-61. doi: 10.3866/PKU.DXHX202403112

    5. [5]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    6. [6]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    7. [7]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    8. [8]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    9. [9]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    10. [10]

      Shenhao QIUQingquan XIAOHuazhu TANGQuan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104

    11. [11]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    12. [12]

      Junqing WENRuoqi WANGJianmin ZHANG . Regulation of photocatalytic hydrogen production performance in GaN/ZnO heterojunction through doping with Li and Au. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 923-938. doi: 10.11862/CJIC.20240243

    13. [13]

      Zhihao HEJiafu DINGYunjie WANGXin SU . First-principles study on the structure-property relationship of AlX and InX (X=N, P, As, Sb). Chinese Journal of Inorganic Chemistry, 2025, 41(5): 1007-1019. doi: 10.11862/CJIC.20240390

    14. [14]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    15. [15]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    16. [16]

      Cuiwu MOGangmin ZHANGChao WUZhipeng HUANGChi ZHANG . A(NH2SO3) (A=Li, Na): Two ultraviolet transparent sulfamates exhibiting second harmonic generation response. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1387-1396. doi: 10.11862/CJIC.20240045

    17. [17]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    18. [18]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    19. [19]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

    20. [20]

      Yuan Chun Yongmei Liu Fuping Tian Hong Yuan Shu'e Song Wanchun Zhu Yunchao Li Zhongyun Wu Xiaokui Wang Yunshan Bai Li Wang Jianrong Zhang Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement of Colloidal and Surface Chemical Properties, Molecular Structure and Properties. University Chemistry, 2025, 40(5): 178-188. doi: 10.12461/PKU.DXHX202503053

Metrics
  • PDF Downloads(399)
  • Abstract views(703)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return