Citation:
SONG Da-Yong, CHEN Jing. Hydrogen-Bonding Interactions between Ionic Liquid 1-Ethyl-3-methylimidazolium Trifluoromethanesulfonate and Water[J]. Acta Physico-Chimica Sinica,
;2014, 30(9): 1605-1610.
doi:
10.3866/PKU.WHXB201407012
-
Attenuated total reflectance infrared (ATR-IR) spectroscopy, two- dimensional correlation spectroscopy, and quantum chemical calculations were used to elucidate the hydrogen-bonding interactions between an ionic liquid (IL), namely 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ([emim][OTf]), and water over a wide concentration range. It was found that water molecules are isolated from each other and embedded in the IL environment at low water concentrations (0.1<x(D2O)< 0.3). The water molecules occupy the IL interstices, and one water molecule forms two hydrogen bonds, with two [OTf]- anions."[OTf]-…HOH… [OTf]-"hydrogen-bonded complexes exist in the [emim][OTf]- water system. In this concentration range, the hydrogen-bonding interaction sites between the cation and water is the alkyl C―H rather than the aromatic C―H. At higher water concentrations, the water molecules form hydrogen bonds with themselves, producing water clusters in the mixture. The hydrogen-bonding interaction site between the cation and water is the aromatic C―H rather than the alkyl C―H.
-
-
-
[1]
(1) Hallett, J. P.;Welton, T. Chem. Rev. 2011, 111, 3508. doi: 10.1021/cr1003248
-
[2]
(2) Greaves, T. L.; Drummond, C. J. Chem. Rev. 2011, 108, 206.(3) Welton, T. Chem. Rev. 1999, 99, 2071. doi: 10.1021/cr980032t
-
[3]
(4) Dupont, J.; de Souza, R. F.; Suarez, P. A. Z. Chem. Rev. 2002, 102, 3667. doi: 10.1021/cr010338r
-
[4]
(5) Grabowski, S. J. Hydrogen Bonding: New Insights; Springer: Dordrecht, 2006.(6) Nicodemus, R. A.; Corcelli, S. A.; Skinner, J. L.; Tokmakoff, A. J. Phys. Chem. B 2011, 115, 5604. doi: 10.1021/jp111434u
-
[5]
(7) Tobias, D. J.; Hemminger, J. C. Science 2008, 319, 1197. doi: 10.1126/science.1152799
-
[6]
(8) Skarmoutsos, I.; Tom, T.; Hunt, P. A. Phys. Chem. Chem. Phys. 2014, 16, 3675. doi: 10.1039/c3cp54551b
-
[7]
(9) Fumino, K.;Wulf, A.; Ludwig, R. Phys. Chem. Chem. Phys. 2009, 11, 8790. doi: 10.1039/b905634c
-
[8]
(10) Miki, K.;Westh, P.; Nishikawa K.; Koga, Y. J. Phys. Chem. B 2005, 109, 9014. doi: 10.1021/jp046309c
-
[9]
(11) Elaiwi, A.; Hitchcock, P. B.; Seddon, K. R.; Srinivasan, N.; Tan, Y. M.;Welton, T.; Zora, J. A. J. Chem. Soc. Dalton Trans. 1995, 21, 3467.(12) Zhang, L. Q.; Li, H. R. Acta Phys. -Chim. Sin. 2010, 26, 2877. [张力群, 李浩然. 物理化学学报, 2010, 26, 2877.] doi: 10.3866/PKU.WHXB20101123
-
[10]
(13) Zhang, L. Q.;Wang, Y.; Xu, Z.; Li, H. J. Phys. Chem. B 2009, 113, 5978. doi: 10.1021/jp900139z
-
[11]
(14) Cammarata, L.; Kazarian, S. G.; Salterb, P. A.;Welton, T. Phys. Chem. Chem. Phys. 2001, 3, 5192. doi: 10.1039/b106900d
-
[12]
(15) Zhang, L.; Xu, Z.;Wang, Y.; Li, H. J. Phys. Chem. B 2008, 112, 6411. doi: 10.1021/jp8001349
-
[13]
(16) Wang, N. N.; Zhang, Q. G.;Wu, F. G.; Li, Q. Z.; Yu, Z.W. J. Phys. Chem. B 2010, 114, 8689. doi: 10.1021/jp103438q
-
[14]
(17) Zhang, Q. G.;Wang, N. N.; Yu, Z.W. J. Phys. Chem. B 2010, 114, 4747. doi: 10.1021/jp1009498
-
[15]
(18) Zhang, Q. G.;Wang, N. N.;Wang, S. L. Yu, Z.W. J. Phys. Chem. B 2011, 115, 11127. doi: 10.1021/jp204305g
-
[16]
(19) Wang, Y.; Li, H. R.; Han, S. J. J. Phys. Chem. B 2006, 110, 24646. doi: 10.1021/jp064134w
-
[17]
(20) Köddermann, T.;Wertz, C.; Heintz, A.; Ludwig, R. Angew. Chem. Int. Edit. 2006, 45, 3697.(21) Bonhôte, P.; Dias, A.; Papageorgiou, N.; Kalyanasundaram, K.; Grätzel, M. Inorg. Chem. 1996, 35, 1168. doi: 10.1021/ic951325x
-
[18]
(22) Behar, D.; Neta, P. J. Phys. Chem. A 2002, 106, 3139.(23) Socrates, G. Infrared Characteristic Group Frequencies; John Wiley & Sons: Chichester, U.K., 1980; p 91.(24) Andanson, J.; Baiker, A. J. Phys. Chem. C 2013, 117, 12210. doi: 10.1021/jp403340v
-
[19]
(25) Tait, S.; Osteryoung, R. A. Inorg. Chem. 1984, 23, 4352. doi: 10.1021/ic00193a049
-
[20]
(26) Joseph, J.; Jemmis, E. D. J. Am. Chem. Soc. 2007, 129, 4620. doi: 10.1021/ja067545z
-
[21]
(27) Noda, I. Appl. Spectrosc. 1993, 47, 1329. doi: 10.1366/0003702934067694
-
[22]
(28) Yang, J. Z.; Lu, X. M.; Gui, J. S.; Xu,W. G. Green Chem. 2004, 6, 541. doi: 10.1039/b412286k
-
[23]
(29) Choudhury, A. R.;Winterton, N.; Steiner, A.; Cooper, A. I.; Johnson, K. A. CrystEngComm 2006, 8, 742. doi: 10.1039/b609598d
-
[1]
-
-
-
[1]
Yang Wang , Yunpeng Fu , Xiaoji Liu , Guotao Zhang , Guobin Li , Wanqiang Liu , Jinglun Wang . Structural Analysis of Nitrile Solutions Based on Infrared Spectroscopy Probes. University Chemistry, 2025, 40(4): 367-374. doi: 10.12461/PKU.DXHX202406113
-
[2]
Jiaxun Wu , Mingde Li , Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098
-
[3]
Huiying Xu , Minghui Liang , Zhi Zhou , Hui Gao , Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011
-
[4]
Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020
-
[5]
Yingran Liang , Fei Wang , Jiabao Sun , Hongtao Zheng , Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024
-
[6]
Hailian Tang , Siyuan Chen , Qiaoyun Liu , Guoyi Bai , Botao Qiao , Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004
-
[7]
Qi Wang , Yicong Gao , Feng Lu , Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141
-
[8]
Juntao Yan , Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024
-
[9]
Ran HUO , Zhaohui ZHANG , Xi SU , Long CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195
-
[10]
Huanhuan XIE , Yingnan SONG , Lei LI . Two-dimensional single-layer BiOI nanosheets: Lattice thermal conductivity and phonon transport mechanism. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 702-708. doi: 10.11862/CJIC.20240281
-
[11]
Haiyu Zhu , Zhuoqun Wen , Wen Xiong , Xingzhan Wei , Zhi Wang . Accurate and efficient prediction of Schottky barrier heights in 2D semimetal/silicon heterojunctions. Acta Physico-Chimica Sinica, 2025, 41(7): 100078-. doi: 10.1016/j.actphy.2025.100078
-
[12]
Baohua LÜ , Yuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105
-
[13]
Runhua Chen , Qiong Wu , Jingchen Luo , Xiaolong Zu , Shan Zhu , Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052
-
[14]
Huayan Liu , Yifei Chen , Mengzhao Yang , Jiajun Gu . Strategies for enhancing capacity and rate performance of two-dimensional material-based supercapacitors. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-. doi: 10.1016/j.actphy.2025.100063
-
[15]
Fan JIA , Wenbao XU , Fangbin LIU , Haihua ZHANG , Hongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473
-
[16]
Yongzhi LI , Han ZHANG , Gangding WANG , Yanwei SUI , Lei HOU , Yaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307
-
[17]
Shiyang He , Dandan Chu , Zhixin Pang , Yuhang Du , Jiayi Wang , Yuhong Chen , Yumeng Su , Jianhua Qin , Xiangrong Pan , Zhan Zhou , Jingguo Li , Lufang Ma , Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046
-
[18]
.
南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积
. CCS Chemistry, 2025, 7(0): -. -
[19]
Mei Yan , Rida Feng , Yerdos·Tohtarkhan , Biao Long , Li Zhou , Chongshen Guo . Expansion and Extension of Liquid Saturated Vapor Measurement Experiment. University Chemistry, 2024, 39(3): 294-301. doi: 10.3866/PKU.DXHX202308103
-
[20]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
-
[1]
Metrics
- PDF Downloads(648)
- Abstract views(719)
- HTML views(14)