Citation:
LIU Fen, ZOU Jian-Wei, HU Gui-Xiang, JIANG Yong-Jun. Quantitative Structure-Property Relationship Studies on the Adsorption of Aromatic Contaminants by Carbon Nanotubes[J]. Acta Physico-Chimica Sinica,
;2014, 30(9): 1616-1624.
doi:
10.3866/PKU.WHXB201406182
-
Ab initio calculations have been performed for a group of 59 aromatic compounds at the HF/6-31G* level of theory. Electrostatic potentials (ESPs) and the statistically based structural descriptors derived from ESPs on the molecular surface have been obtained. The linear relationships between the adsorption equilibrium constants of organic contaminants by carbon nanotubes and the theoretical descriptors have been established by multiple linear regression. It is shown that the quantities derived from electrostatic potentials, Vmin, σ+2 and ΣVind+ together with the molecular surface area (S) and the energy level of lowest occupied molecular orbital (εLUMO) can be used to express the quantitative structure-property relationship (QSPR) of this sample set. All of the descriptors introduced in the QSPR models have definite physical meanings and their reasonability can be explained in terms of intermolecular interactions between the aromatic pollutants and carbon nanotubes or water. The stabilities and predictive powers of the models have been validated by "leave-one-out" and Monte Carlo cross-validation methods. Three nonlinear modeling techniques, namely supported vector machine (SVM), least-square supported vector machine (LSSVM), as well as Gaussian process (GP), have also been used to construct the predictive models. Though the SVM and LSSVM models exhibit strong fitting abilities, their predictive powers are inferior to the other models tested. The GP model yields the best fit and predictive ability among all of the models. Its advantage over the linear model, however, is not as remarkable as expected, which means that the relationship between the molecular structure and the adsorption property for the present system is primarily linear.
-
-
-
[1]
(1) Popov, V. N. Mater. Sci. Eng. R-Rep. 2004, 43, 61. doi: 10.1016/j.mser.2003.10.001
-
[2]
(2) Spitalsky, Z.; Tasis, D.; Papagelis, K.; Galiotis, C. Prog. Polym. Sci. 2010, 35, 357. doi: 10.1016/j.progpolymsci.2009.09.003
-
[3]
(3) Upadhyayula, V. K. K.; Deng, S.; Mitchell, M. C.; Smith, G. B. Sci. Total Environ. 2009, 408, 1. doi: 10.1016/j.scitotenv.2009.09.027
-
[4]
(4) Baek, Y.; Kim, C.; Seo, D. K.; Kim, T.; Lee, J. S.; Kim, Y. H.; Ahn, K. H.; Bae, S. S.; Lee, S. C.; Lim, J.; Lee, K.; Yoon, J. J. Membr. Sci. 2014, 460, 171. doi: 10.1016/j.emsci.2014.02.042
-
[5]
(5) Deng, S. G.; Upadhyayula, V. K. K.; Smith, G. B.; Mitchell, M. C. IEEE Sens. J. 2008, 8, 954. doi: 10.1109/JSEN.2008.923929
-
[6]
(6) Mauter, M. S.; Elimelech, M. Environ. Sci. Technol. 2008, 42, 5843. doi: 10.1021/es8006904
-
[7]
(7) Ye, C.; ng, Q. M.; Lu, F. P.; Liang, J. Acta Phys. -Chim. Sin. 2007, 23, 1321. [叶超, 巩前明, 卢方平, 梁吉. 物理化学学报, 2007, 23, 1321.] doi: 10.1016/S1872-1508(07)60066-7
-
[8]
(8) Kah, M.; Zhang, X.; Jonker, M. T. O.; Hofmann, T. Environ. Sci. Technol. 2011, 45, 6011.(9) Zeng, X. L.; Zhang, X. L.;Wang, Y. Chemosphere 2013, 91, 229. doi: 10.1016/j.chemosphere.2012.12.060
-
[9]
(10) Ghasemi, J.; Saadi, S. Anal. Chim. Acta 2007, 2, 99.(11) Lu, C. H.;Wang, Y.; Yin, C. S.; Guo,W. M.; Hu, X. F. Chemosphere 2006, 63, 1384. doi: 10.1016/j.chemosphere.2005.09.052
-
[10]
(12) Feng, C. J.; Mu, L. L.; Yang,W. H.; Cai, K. Y. Acta Chim. Sin. 2008, 66, 2093. [冯长君, 沐来龙, 杨伟华, 蔡可迎. 化学学报, 2008, 66, 2093.](13) Xia, X. R.; Nancy, A.; Monteiro, R.; Riviere, J. E. Nat. Nanotechnol. 2010, 5, 671. doi: 10.1038/nnano.2010.164
-
[11]
(14) Apul, O. G.;Wang, Q, L.; Shao, T.; Rieck J. R.; Karanfil, T. Environ. Sci. Technol. 2013, 47, 2295.(15) Wang, Q. L.; Apul, O. G.; Xuan, P. F.; Luo, F.; Karanfil, T. RSC Adv. 2013, 3, 23924. doi: 10.1039/c3ra43599g
-
[12]
(16) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 09, Revision A.02; Gaussian Inc.:Wallingford, CT, 2009.(17) STATISTICA forWindows, Version 5.5; Statsoft Inc.: Tulsa, OK, 1999.(18) Zhou, P.; Tian, F. F.; Lv, F. L.; Shang, Z. C. J. Chromatogr. A 2009, 1216, 3107. doi: 10.1016/j.chroma.2009.01.086
-
[13]
(19) Pwealta-Inga, Z.; Lane, P.; Murray, J. S.; Boyd, S.; Grice, M. E.; O′Connor, C. J.; Politzer, P. Nano Lett. 2003, 3, 21. doi: 10.1021/nl020222q
-
[14]
(20) Murray, J. S.; Brinck, T.; Lane, P.; Paulsen, K.; Politzer, P. J. Mol. Struct. -Theochem 1994, 307, 55. doi: 10.1016/0166-1280(94)80117-7
-
[15]
(21) Sang, P.; Zou, J.W.; Zhou, P.; Xu, L. Chemosphere 2011, 83, 1045. doi: 10.1016/j.chemosphere.2011.01.063
-
[16]
(22) Zou, J.W.; Zhao,W. N.; Shang, Z. C.; Huang, M. L.; Guo, M.; Yu, Q. S. J. Phys. Chem. A 2002, 106, 11550. doi: 10.1021/jp025984o
-
[17]
(23) Xu, H. Y.; Zou, J.W.; Jiang, Y. J.; Hu, G. X.; Yu, Q. S. J. Chromatog. A 2008, 1198 -1199, 202.(24) Tropsha, A.; lbraikh, A. Handbook of Chemoinformatics Al rithms; CRC Press: Boca Raton, FL, 2010; pp 213-233.(25) Manchester, J.; CzermiDski, R.J. Chem. Inf. Model. 2008, 48, 1167. doi: 10.1021/ci800009u
-
[18]
(26) Vapnik, V. N. The Nature of Statistical Learning Theory, 2nd ed.; Springer-Verlag: New York, 1999; pp 138-146.(27) Obrezanova, O.; Csányi, G.; la, J. M. R.; Segall, M. D. J. Chem. Inf. Model. 2007, 47, 1847. doi: 10.1021/ci7000633
-
[19]
(28) Schroeter, T. S.; Schwaighofer, A.; Mika, S.; Laak, A. T.; Suelzle, D.; Ganzer, U.; Heinrich, N.; Müller, K. R. Med. Chem . Res. 2007, 2, 1265.(29) Zhou, P.; Chen, X.;Wu, Y. Q.; Shang, Z. C. Amino Acid 2010, 38, 199. doi: 10.1007/s00726-008-0228-1
-
[20]
(30) Ren, Y. R.; Chen, S. C.; Zou, X. C.; Tian, F. F.; Zhou, P. Scientia Sinica Chimica 2012, 42, 1179. [任彦荣, 陈绍成, 邹晓川, 田菲菲, 周鹏. 中国科学: 化学, 2012, 42, 1179.]
-
[21]
(31) Sang, P.; Zou, J.W.; Dai, D. M.; Jiang, Y. J. Chemometrics Intell. Lab. Syst. 2013, 127, 166.
-
[22]
(32) Sang, P.; Zou, J.W.; Yu, Y. L.; Huang, M. L. Chemometrics Intell. Lab. Syst. 2012, 112, 8.
-
[1]
-
-
-
[1]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[2]
Haihua Yang , Minjie Zhou , Binhong He , Wenyuan Xu , Bing Chen , Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100
-
[3]
Bowen Yang , Rui Wang , Benjian Xin , Lili Liu , Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024
-
[4]
Xiufang Wang , Donglin Zhao , Kehua Zhang , Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025
-
[5]
Tianyun Chen , Ruilin Xiao , Xinsheng Gu , Yunyi Shao , Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017
-
[6]
Xinxin YU , Yongxing LIU , Xiaohong YI , Miao CHANG , Fei WANG , Peng WANG , Chongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438
-
[7]
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
-
[8]
Jingjing QING , Fan HE , Zhihui LIU , Shuaipeng HOU , Ya LIU , Yifan JIANG , Mengting TAN , Lifang HE , Fuxing ZHANG , Xiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003
-
[9]
Yuanpei ZHANG , Jiahong WANG , Jinming HUANG , Zhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077
-
[10]
Xiaoling LUO , Pintian ZOU , Xiaoyan WANG , Zheng LIU , Xiangfei KONG , Qun TANG , Sheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271
-
[11]
Yi DING , Peiyu LIAO , Jianhua JIA , Mingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393
-
[12]
Yuan Chun , Yongmei Liu , Fuping Tian , Hong Yuan , Shu'e Song , Wanchun Zhu , Yunchao Li , Zhongyun Wu , Xiaokui Wang , Yunshan Bai , Li Wang , Jianrong Zhang , Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement of Colloidal and Surface Chemical Properties, Molecular Structure and Properties. University Chemistry, 2025, 40(5): 178-188. doi: 10.12461/PKU.DXHX202503053
-
[13]
Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036
-
[14]
Wenjie SHI , Fan LU , Mengwei CHEN , Jin WANG , Yingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360
-
[15]
Qianlang Wang , Jijun Sun , Qian Chen , Quanqin Zhao , Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205
-
[16]
Dongdong Yao , JunweiGu , Yi Yan , Junliang Zhang , Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125
-
[17]
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
-
[18]
Yuhui Yang , Jintian Luo , Biao Zuo . A Teaching Approach to Polymer Surface and Interface in Undergraduate Polymer Physics Courses. University Chemistry, 2025, 40(4): 126-130. doi: 10.12461/PKU.DXHX202408056
-
[19]
Liang MA , Honghua ZHANG , Weilu ZHENG , Aoqi YOU , Zhiyong OUYANG , Junjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075
-
[20]
Peng ZHOU , Xiao CAI , Qingxiang MA , Xu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047
-
[1]
Metrics
- PDF Downloads(633)
- Abstract views(793)
- HTML views(37)