Citation: WANG Li, MA Jun-Hong. Synthesis and Electrocatalytic Properties of Pt Nanoparticles on Nitrogen-Doped Reduced Graphene Oxide for Methanol Oxidation[J]. Acta Physico-Chimica Sinica, ;2014, 30(7): 1267-1273. doi: 10.3866/PKU.WHXB201405052 shu

Synthesis and Electrocatalytic Properties of Pt Nanoparticles on Nitrogen-Doped Reduced Graphene Oxide for Methanol Oxidation

  • Received Date: 22 March 2014
    Available Online: 5 May 2014

    Fund Project:

  • Nitrogen-doped reduced graphene oxide materials (N-R ) derived from pyrolysis of graphene oxide ( )/polyaniline composites were used as a support for the immobilization of Pt nanoparticles. The morphologies and structures of N-R and Pt/N-R were comprehensively characterized by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and Raman spectroscopy. The electrocatalytic activities of the as-prepared catalysts for CO stripping and methanol oxidation were investigated by cyclic voltammetry and chronoamperometry. The results showed that was reduced to multilayer graphene by thermal annealing accompanied with successful incorporation of N atoms into R . Moreover, the presence of the doped N atoms enhanced the surface defects and electrical conductivity of the R materials. Pt nanoparticles on N-R were more evenly dispersed, had better CO tolerance, and had higher activity/stability for methanol oxidation than those on R without N doping.

  • 加载中
    1. [1]

      (1) Wei, D.; Liu, Y.;Wang, Y.; Zhang, H.; Huang, L.; Yu, G. Nano Lett. 2009, 9, 1752. doi: 10.1021/nl803279t

    2. [2]

      (2) Yang, Z.; Yao, Z.; Li, G.; Fang, G.; Nie, H.; Liu, Z.; Zhou, X.; Chen, X.; Huang, S. ACS Nano 2012, 6, 205. doi: 10.1021/nn203393d

    3. [3]

      (3) Shao, Y. Y.; Sui, J. H.; Yin, G. P.; Gao, Y. Z. Appl. Catal. B 2008, 79 (1), 89. doi: 10.1016/j.apcatb.2007.09.047

    4. [4]

      (4) Xiong, B.; Zhou, Y. K.; O′Hayre, R.; Shao, Z. P. Appl. Surf. Sci. 2013, 266, 433. doi: 10.1016/j.apsusc.2012.12.053

    5. [5]

      (5) Wu, J.; Hu, F.; Hu, X.;Wei, Z. D.; Shen, P. K. Electrochimica Acta 2008, 53 (28), 8341. doi:10.1016/j.electacta.2008.06.051

    6. [6]

      (6) Zhou, C.W.; Kong, J.; Yenilmez, E.; Dai, H. J. Science 2000, 290, 1552. doi: 10.1126/science.290.5496.1552

    7. [7]

      (7) He, D. P.; Jiang, Y. L.; Lv, H. F.; Pan, M.; Mu, S. C. Applied Catalysis B: Environmental 2013, 132 -133, 379.

    8. [8]

      (8) Xiao, X.; Zhou, Y. K.; Lu, J. M.; Tian, X. H.; Zhu, H. X.; Liu, J. G. Electrochimica Acta 2014, 120, 439. doi: 10.1016/j. electacta.2013.12.062

    9. [9]

      (9) Zhang, L. S.; Liang, X. Q.; Song,W. G.;Wu, Z. Y. Phys. Chem. Chem. Phys. 2010, 12, 12055. doi: 10.1039/c0cp00789g

    10. [10]

      (10) Sun, L.;Wang, L.; Tian, G. G.; Tan, T. X.; Xie, Y.; Shi, K. Y.; Li, M. T.; Fu, H. G. RSC Adv. 2012, 2, 4498. doi: 10.1039/c2ra01367c

    11. [11]

      (11) Wang, Y.; Shao, Y. Y.; Matson, D.W.; Li, J. H.; Lin, Y. H. ACS Nano 2010, 4, 1790.

    12. [12]

      (12) Hassan, F. M.; Chabot, V.; Li, J. D.; Kim, B. K.; Ricardez-Sandoval, L.; Yu, A. P. J. Mater. Chem. A 2013, 1, 2904.

    13. [13]

      (13) Xu, X.; Zhou, Y. K.; Yuan, T.; Li, Y.W. Electrochimica Acta 2013, 112, 587. doi: 10.1016/j.electacta.2013.09.038

    14. [14]

      (14) Lin, Z. Y.;Waller, G.; Liu, Y.; Liu, M. L.;Wong, C. P. Adv. Energy Mater. 2012, 2 (7), 884.

    15. [15]

      (15) Lin, Z.Y.; Song, M. K.; Ding, Y.; Liu, Y.; Liu, M. L.;Wong, C. P. Phys. Chem. Chem. Phys. 2012, 14, 3381. doi: 10.1039/c2cp00032f

    16. [16]

      (16) Sheng, Z. H.; Shao, L.; Chen, J. J.; Bao,W. J.;Wang, F. B.; Xia, X. H. ACS Nano 2011, 5, 4350. doi: 10.1021/nn103584t

    17. [17]

      (17) Lin, Z. Y.;Waller, G.; Liu, Y.; Liu, M. L.;Wong, C. P. Nano Energy 2013, 2, 241. doi: 10.1016/j.nanoen.2012.09.002

    18. [18]

      (18) Lai, L. F.; Potts, J. R.; Zhan, D.;Wang, L.; Poh, C. K.; Tang, C. H.; ng, H.; Shen, Z. X.; Lin, J. Y.; Rodney, S. R. Energy Environ. Sci. 2012, 5, 7936. doi: 10.1039/c2ee21802j

    19. [19]

      (19) Wu, G.; Mack, N. H.; Gao,W.; Ma, S. G.; Zhong, R. Q.; Han, J. T.; Baldwin, J. K.; Zelenay, P. ACS Nano 2012, 6 (11), 9764. doi: 10.1021/nn303275d

    20. [20]

      (20) Hummers,W. S.; Offeman, R. E. J. Am. Chem. Soc. 1958, 80, 1339. doi: 10.1021/ja01539a017

    21. [21]

      (21) Wu, G.; Swaidan, R. J.; Li, D. Y.; Li, N. Electrochimica Acta 2008, 53, 7622. doi: 10.1016/j.electacta.2008.03.082

    22. [22]

      (22) Stankovicha, S.; Dikina, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y. Y.;Wu, Y.; Nguyen, S. B. T.; Ruoff, R. S. Carbon 2007, 45 (7), 1558. doi: 10.1016/j.carbon.2007.02.034

    23. [23]

      (23) Liu, S.;Wang, J.; Zeng, J.; Ou, J.; Li, Z.; Liu, X.; Yang, S. G. J. Power Sources 2010, 195 (15), 4628. doi: 10.1016/j. jpowsour.2010.02.024

    24. [24]

      (24) Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S.; Geim, A. K. Phys. Rev. Lett. 2006, 97, 187401. doi: 10.1103/PhysRevLett.97.187401

    25. [25]

      (25) Kudin, K. N.; Ozbas, B.; Schniepp, H. C.; Prud′homme, R. K.; Aksay, I. A.; Car, R. Nano Lett. 2008, 8, 36. doi: 10.1021/nl071822y

    26. [26]

      (26) Xin, Y. C.; Liu, J. G.; Zhou, Y.; Liu,W. M.; Gao, J.; Xie, Y.; Yin, Y.; Zou, Z. G. Electrochimica Acta 2012, 60, 354. doi: 10.1016/j.electacta.2011.11.062

    27. [27]

      (27) Kuo, P. L.; Chen,W. F.; Huang, H. Y.; Chang, I. C.; Dai, S. A. J. Phys. Chem. B 2006, 110, 3071.

    28. [28]

      (28) Wu, G.; Li, D.; Dai, C.;Wang, D.; Li, N. Langmuir 2008, 24, 3566. doi: 10.1021/la7029278

    29. [29]

      (29) Groves, M. N.; Chan, A. S.W.; Malardier, J. C.; Jugroot, M. Chem. Phys. Lett. 2009, 481, 214. doi: 10.1016/j.cplett.2009.09.074

    30. [30]

      (30) Zhou, Y.; Neyerlin, K.; Olson, T. S.; Pylypenko, S.; Bult, J.; Dinh, H. N.; Gennett, T.; Shao, Z. P.; O'Hayre, R. Energy Environ. Sci. 2010, 3 (10), 1437. doi: 10.1039/c003710a

    31. [31]

      (31) Wang, S. Y.; Jiang, S. P.;Wang, X.; Guo, J. Electrochimica Acta 2011, 56, 1563. doi: 10.1016/j.electacta.2010.10.055

    32. [32]

      (32) Zheng, S. F.; Hu, J. S.; Zhong, L. S.;Wan, L. J.; Song,W. G. J. Phys. Chem. C 2007, 111, 11174. doi: 10.1021/jp0727042

    33. [33]

      (33) Zheng, B.; Zheng,W. T.; Zhang, K.;Wen, Q. B.; Zhu, J. Q.; Meng, S. H.; He, X. D.; Han, J. C. Carbon 2006, 44, 962. doi: 10.1016/j.carbon.2005.10.009


  • 加载中
    1. [1]

      Hailang JIAYujie LUPengcheng JI . Preparation and properties of nitrogen and phosphorus co-doped graphene carbon aerogel supported ruthenium electrocatalyst for hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2327-2336. doi: 10.11862/CJIC.20250021

    2. [2]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    3. [3]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    4. [4]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    5. [5]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    6. [6]

      Ruolin CHENGYue WANGXiyao NIUHuagen LIANGLing LIUShijian LU . Efficient photothermal catalytic CO2 cycloaddition over W18O49/rGO composites. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1276-1284. doi: 10.11862/CJIC.20240424

    7. [7]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    8. [8]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    9. [9]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    10. [10]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    11. [11]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    12. [12]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    13. [13]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    14. [14]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    15. [15]

      Shiqian WEIXinyu TIANHong LIUMaoxia CHENFan TANGQiang FANWeifeng FANYu HU . Oxygen reduction reaction/oxygen evolution reaction catalytic performances of different active sites on nitrogen-doped graphene loaded with iron single atoms. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1776-1788. doi: 10.11862/CJIC.20250102

    16. [16]

      Xia ZHANGYushi BAIXi CHANGHan ZHANGHaoyu ZHANGLiman PENGShushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255

    17. [17]

      Kaihui HuangDejun ChenXin ZhangRongchen ShenPeng ZhangDifa XuXin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-0. doi: 10.3866/PKU.WHXB202407020

    18. [18]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    19. [19]

      Yue ZhangBao LiLixin Wu . GO-Assisted Supramolecular Framework Membrane for High-Performance Separation of Nanosized Oil-in-Water Emulsions. Acta Physico-Chimica Sinica, 2024, 40(5): 2305038-0. doi: 10.3866/PKU.WHXB202305038

    20. [20]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

Metrics
  • PDF Downloads(757)
  • Abstract views(949)
  • HTML views(14)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return