Citation:
XU Shu-Zhen, HAN Xue, TIAN Jun-Nan, WU Zhai, CHEN Zhong-Xiu. Mechanism behind the Inhibition of Sweetness Intensity of Aspartame by Guar Gum and Locust Bean Gum[J]. Acta Physico-Chimica Sinica,
;2014, 30(6): 1134-1141.
doi:
10.3866/PKU.WHXB201404251
-
Current research on the effects of macromolecular hydrocolloids on sweetness is mainly focused on the properties of hydrocolloids and their texture-taste interactions. In this paper, the influence of two kinds of nonionic food hydrocolloids, Guar gum (GG) and Locust bean gum (LBG) on the taste of aspartame (APM) was studied. Sensory evaluation revealed high concentrations of GG and LBG significantly inhibited the sweetness intensity of APM, especially when their concentrations were higher than C* (coil overlap concentration). The mechanism of this phenomenon was investigated using an artificial taste receptor model and isothermal titration calorimetry. The association constant for APM, determined by the artificial taste receptor model, decreased in the presence of GG and LBG. More bound water was found in GG and LBG with an increase in the hydrocolloid concentration, especially at higher than C*. Additionally, water diffusion was hampered and this contributed to the lower sweetness intensity. We thus determined the influence of the hydrocolloid on the binding of sweeteners with the receptor, its water mobility as well as its diffusion behavior in the hydrocolloidal texture. The information obtained enables an understanding of the mechanism behind the effects of macromolecular hydrocolloids on taste.
-
Keywords:
-
Sweetness
, - Thermodynamics,
- Watermobility,
- Diffusion,
- Aspartame,
- Nonionic hydrocolloid
-
-
-
-
[1]
(1) Saha, D.; Bhattacharya, S. J. Food Sci. Technol. 2010, 47 (6), 587. doi: 10.1007/s13197-010-0162-6
-
[2]
(2) Mackey, A. O.; Valassi, K. Food Technol. 1956, 10, 238.
-
[3]
(3) Mackey, A. O. J. Food Sci. 1958, 23, 580.
-
[4]
(4) Christensen, C. M. Percep. Psychophys. 1980, 28 (4), 347. doi: 10.3758/BF03204394
-
[5]
(5) Baines, Z. V.; Morris, E. R. Food Hydrocolloids 1987, 1 (3), 197. doi: 10.1016/S0268-005X(87)80003-6
-
[6]
(6) Stone, H.; Oliver, S. J. Food Sci. 1966, 31, 129. doi: 10.1111/j.1365-2621.1966.tb15425.x
-
[7]
(7) Pangborn, R. M.; Trabue, I. M.; Szczesniak, A. S. J. Texture Studies 1973, 4 (2), 224. doi: 10.1111/j.1745-4603.1973.tb00666.x
-
[8]
(8) Barisas, L.; Roseit, T. R.; Gao, Y.; Schmidt, S. J.; Klein, B. P. J. Food Sci. 1995, 60, 523. doi: 10.1111/j.1365-2621.1995.tb09818.x
-
[9]
(9) Paulus, K.; Haas, E. M. Chem. Senses 1980, 5 (1), 23. doi: 10.1093/chemse/5.1.23
-
[10]
(10) Abson, R.; Gaddipati, S. R.; Hort, J.; Mitchell, J. R.;Wolf, B.; Hill, S. H. Food Hydrocolloids 2014, 35, 85.
-
[11]
(11) Gittings, M. R.; Cipelletti, L.; Trappe, V.;Weitz, D. Z.; In, M.; Lal, J. J. Phys. Chem. A 2001, 105, 9310. doi: 10.1021/jp0121825
-
[12]
(12) Mosca, A. C.; van de Velde, F.; Bult, J. H. F.; van Boekel, M. A. J. S. LWT -Food Sci. Technol. 2012, 46, 183. doi: 10.1016/j.lwt.2011.10.009
-
[13]
(13) Boland, A. B.; Delahunty, C. M.; van Ruth, S. M. Food Chem. 2006, 96, 452. doi: 10.1016/j.foodchem.2005.02.027
-
[14]
(14) Matsuo, R. Crit. Rev. Oral. Biol. Med. 2000, 11 (2), 216.
-
[15]
(15) Burseg, K. M. M.; Camacho, S.; Bult, J. H. F. J. Agric. Food. Chem. 2011, 59 (10), 5548. doi: 10.1021/jf2002848
-
[16]
(16) Shankar, P.; Ahuja, S.; Sriram, K. Nutrition 2013, 29, 1293. doi: 10.1016/j.nut.2013.03.024
-
[17]
(17) Nie, Y.; Hobbs, J. R.; Vigues, S.; Olson,W. J.; Conn, G. L.; Munger, S. D. Chem. Senses 2006, 31, 505. doi: 10.1093/chemse/bjj053
-
[18]
(18) DuBois, G. E. J. Flavour Frag. 2011, 26, 239. doi: 10.1002/ffj.2042
-
[19]
(19) Chen, Z. X.; Guo, G. M.; Deng, S. P. J. Agric. Food Chem. 2009, 57, 2945. doi: 10.1021/jf803302g
-
[20]
(20) Chen, Z. X.;Wu,W.; Zhang,W. B.; Deng, S. P. Food Chem. 2011, 128, 134. doi: 10.1016/j.foodchem.2011.03.008
-
[21]
(21) Dong,W. R.; Chen, G.; Chen, Z. X.; Deng, S. P. Food Chem. 2013, 141, 3110. doi: 10.1016/j.foodchem.2013.05.160
-
[22]
(22) Chiang, L. Y.; Swirczewski, J.W.; Hsu, C. S.; Chowdhury, S. K.; Cameron, S.; Creegan, K. J. Chem. Soc., Chem. Commun. 1992, 1791.
-
[23]
(23) Sun, J.; Yu, J. S.; Jin, S.; Zha, X.;Wu, Y. Q.; Yu, Z.W. J. Phys. Chem. B 2010, 114, 9854. doi: 10.1021/jp1009719
-
[24]
(24) Guest, S.; Essick, G.; Patel, A.; Prajapati, R.; McGlone, F. Food Qual. Prefer. 2007, 18, 342. doi: 10.1016/j.foodqual.2006.03.012
-
[25]
(25) Cook, D. J.; Hollowood, T. A.; Linforth, R. S. T.; Taylor, A. J. Food Qual. Prefer. 2002, 13, 473. doi: 10.1016/S0950-3293(02)00066-6
-
[26]
(26) Andrade, C. T.; Azero, E. G.; Luciano, L.; ncalve, M. P. Int. J. Biol. Macromol. 1999, 26, 181. doi: 10.1016/S0141-8130(99)00075-6
-
[27]
(27) Mälkki, Y.; Heiniö, R. L.; Autio, K. Food Hydrocolloids 1993, 6 (6), 525. doi: 10.1016/S0268-005X(09)80076-3
-
[28]
(28) Bayarri, S.; Izquierdo, L.; Costell, E. Food Hydrocolloids 2007, 21 (8), 1265. doi: 10.1016/j.foodhyd.2006.09.010
-
[29]
(29) Shallenberger, R. S.; Acree, T. E. Nature 1967, 216, 480. doi: 10.1038/216480a0
-
[30]
(30) Jiang, L. X.; Yan, Y.; Huang, J. B.; Yu, C. F.; Jin, C.W.; Deng, M. L.;Wang, Y. L. J. Phys. Chem. B 2010, 114, 2165. doi: 10.1021/jp911092y
-
[31]
(31) Ghai, R.; Falconer, R. J.; Collins, B. M. J. Mol. Recog. 2012, 25 (1), 32. doi: 10.1002/jmr.1167
-
[32]
(32) Samavati, V.; Razavi, S. H.; Mousavi, S. M. Iran J. Chem. Chem. Eng.-Int. Engl. Ed. 2008, 27 (2), 23.
-
[33]
(33) Chen, Z. X.; Deng, S. P.; Li, X. K. J. Colloid Interface Sci. 2008, 318 (2), 389. doi: 10.1016/j.jcis.2007.09.084
-
[34]
(34) Kokini, J. K.; Bistany, K.; Poole, M.; Stier, E. U. J. Texture Studies 1982, 13 (2), 187. doi: 10.1111/j.1745-4603.1982.tb01394.x
-
[1]
-
-
-
[1]
Mahmoud Sayed , Han Li , Chuanbiao Bie . Challenges and prospects of photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(9): 100117-0. doi: 10.1016/j.actphy.2025.100117
-
[2]
Xiaohui Li , Ze Zhang , Jingyi Cui , Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027
-
[3]
Yuchen Zhou , Huanmin Liu , Hongxing Li , Xinyu Song , Yonghua Tang , Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067
-
[4]
Chunguang Rong , Miaojun Xu , Xingde Xiang , Song Liu . 化学热力学熵变计算的教学探讨. University Chemistry, 2025, 40(8): 323-329. doi: 10.12461/PKU.DXHX202409146
-
[5]
Jianchun Wang , Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082
-
[6]
Tongqi Ye , Yanqing Wang , Qi Wang , Huaiping Cong , Xianghua Kong , Yuewen Ye . Reform of Classical Thermodynamics Curriculum from the Perspective of Computational Chemistry. University Chemistry, 2025, 40(7): 387-392. doi: 10.12461/PKU.DXHX202409128
-
[7]
Ruming Yuan , Pingping Wu , Laiying Zhang , Xiaoming Xu , Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057
-
[8]
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074
-
[9]
Yue Wu , Jun Li , Bo Zhang , Yan Yang , Haibo Li , Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028
-
[10]
Tianqi Bai , Kun Huang , Fachen Liu , Ruochen Shi , Wencai Ren , Songfeng Pei , Peng Gao , Zhongfan Liu . Nanoscale Mechanism of Microstructure-Dependent Thermal Diffusivity in Thick Graphene Sheets. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-0. doi: 10.3866/PKU.WHXB202404024
-
[11]
Xin Feng , Kexin Guo , Chunguang Jia , Bowen Liu , Suqin Ci , Junxiang Chen , Zhenhai Wen . Hydrogen Generation Coupling with High-Selectivity Electrocatalytic Glycerol Valorization into Formate in an Acid-Alkali Dual-Electrolyte Flow Electrolyzer. Acta Physico-Chimica Sinica, 2024, 40(5): 2303050-0. doi: 10.3866/PKU.WHXB202303050
-
[12]
Xinyu Liu , Weiran Hu , Zhengkai Li , Wei Ji , Xiao Ni . Algin Lab: Surging Luminescent Sea. University Chemistry, 2024, 39(5): 396-404. doi: 10.3866/PKU.DXHX202312021
-
[13]
Cuicui Yang , Bo Shang , Xiaohua Chen , Weiquan Tian . Understanding the Wave-Particle Duality and Quantization of Confined Particles Starting from Classic Mechanics. University Chemistry, 2025, 40(3): 408-414. doi: 10.12461/PKU.DXHX202407066
-
[14]
Shanghua Li , Malin Li , Xiwen Chi , Xin Yin , Zhaodi Luo , Jihong Yu . High-Stable Aqueous Zinc Metal Anodes Enabled by an Oriented ZnQ Zeolite Protective Layer with Facile Ion Migration Kinetics. Acta Physico-Chimica Sinica, 2025, 41(1): 100003-0. doi: 10.3866/PKU.WHXB202309003
-
[15]
Peiran ZHAO , Yuqian LIU , Cheng HE , Chunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355
-
[16]
Qiuyu Xiang , Chunhua Qu , Guang Xu , Yafei Yang , Yue Xia . A Journey beyond “Alum”. University Chemistry, 2024, 39(11): 189-195. doi: 10.12461/PKU.DXHX202404094
-
[17]
Yan Li , Xinze Wang , Xue Yao , Shouyun Yu . 基于激发态手性铜催化的烯烃E→Z异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053
-
[18]
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
-
[19]
Jun Huang , Pengfei Nie , Yongchao Lu , Jiayang Li , Yiwen Wang , Jianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-0. doi: 10.1016/j.actphy.2025.100066
-
[20]
Yingxian Wang , Tianye Su , Limiao Shen , Jinping Gao , Qinghe Wu . Introduction of Chinese Lacquer from the Perspective of Chemistry: Popularizing Chemistry in Lacquer and Inherit Lacquer Art. University Chemistry, 2024, 39(5): 371-379. doi: 10.3866/PKU.DXHX202312015
-
[1]
Metrics
- PDF Downloads(439)
- Abstract views(1038)
- HTML views(67)