Citation: FU Ping-Feng, ZHANG Peng-Yi. Low-Temperature Electrostatic Self-Assembly of Noble Metals on TiO2 Nanostructured Films with Enhanced Photocatalytic Activity[J]. Acta Physico-Chimica Sinica, ;2014, 30(5): 965-972. doi: 10.3866/PKU.WHXB201403171 shu

Low-Temperature Electrostatic Self-Assembly of Noble Metals on TiO2 Nanostructured Films with Enhanced Photocatalytic Activity

  • Received Date: 10 February 2014
    Available Online: 17 March 2014

    Fund Project:

  • Photoactive TiO2 nanostructured films (i.e., nanoflowers and nanowires) have been directly synthesized on Ti sheets using an alkali-hydrothermal route. Ultrafine noble metals (i.e., Au, Pt, Pd) nanoparticles (NPs) were homogenously dispersed onto the TiO2 nanostructures using a facile low temperature electrostatic self-assembly approach. The resulting noble-metal/TiO2-nanostructured films supported on Ti sheets had an all-in-one structure with all of the virtues of a porous framework and enhanced photocatalytic activity. Ultra highresolution field-emission scanning electron microscopy (FESEM) revealed that the noble metal NPs were uniformly dispersed on the TiO2 surface with od physical separation properties. The average sizes of the loaded Au, Pt, and Pd NPs were approximately 4.0, 2.0, and 10.0 nm, respectively. Noble metal NPs were deposited not only on the film surface but also in the interior framework of the TiO2 films with a depth of more than 580 nm, as revealed by Auger electron spectroscopic (AES) in-depth profiling analysis. X-ray photoelectron spectroscopy (XPS) analysis revealed that the Pt and Pd NPs had been partially oxidized to PtOabs and immobicompletely oxidized to PdO, respectively, whereas the Au NPs remained in a metallic state after being annealed in air at 300 ℃. During the electrostatic self-assembly process, the loading of the noble metal can be adjusted by controlling the assembly time and the colloidal pH value. The degradation of aqueous methyl orange showed that the Au/TiO2 (or Pt/TiO2)-nanostructured films possessed remarkably enhanced photocatalytic activity compared with pure TiO2 films, and revealed that the metal NPs played a positive role in separating photogenerated hole-electron pairs. However, the deposited PdO species had no discernible impact on the activity of the TiO2 nanostructures.

  • 加载中
    1. [1]

      (1) He, X. L.; Cai, Y. Y.; Zhang, H. M.; Liang, C. H. J. Mater. Chem. 2011, 21, 475. doi: 10.1039/c0jm02404j

    2. [2]

      (2) Wang, J.; Lin, Z. Q. Chem. Mater. 2010, 22, 579. doi: 10.1021/cm903164k

    3. [3]

      (3) Lu, Y.; Chen, S.; Quan, X.; Yu, H. T. Chin. J. Catal. 2011, 32, 1838. [路莹, 陈硕, 全燮, 于洪涛. 催化学报, 2011, 32, 1838.] doi: 10.1016/S1872-2067(10)60288-4

    4. [4]

      (4) Mor, G. K.; Shankar, K.; Paulose, M.; Varghese, O. K., Grimes, C. A. Nano Lett. 2005, 5, 191. doi: 10.1021/nl048301k

    5. [5]

      (5) Wu, Q.; Su, Y. F.; Sun, L.; Wang, M. Y.; Wang, Y. Y.; Lin, C. J. Acta Phys. -Chim. Sin. 2012, 28, 635. [吴奇, 苏钰丰, 孙岚, 王梦晔, 王莹莹, 林昌健. 物理化学学报, 2012, 28, 635.] doi: 10.3866/PKU.WHXB201112231

    6. [6]

      (6) Peng, X. S.; Chen, A. C. Adv. Funct. Mater. 2006, 16, 1355.

    7. [7]

      (7) Jennings, J. R.; Ghicov, A.; Peter, L. M.; Schmuki, P.; Walker, A. B. J. Am. Chem. Soc. 2008, 130, 13364. doi: 10.1021/ja804852z

    8. [8]

      (8) Tachikawa, T.; Majima, T. J. Am. Chem. Soc. 2009, 131, 8485. doi: 10.1021/ja900194m

    9. [9]

      (9) Astruc, D.; Lu, F.; Aranzaes, J. R. Angew. Chem. Int. Edit. 2005, 44, 7852.

    10. [10]

      (10) Fu, P. F.; Zhang, P. Y. Thin Solid Films 2011, 519, 3480. doi: 10.1016/j.tsf.2010.12.245

    11. [11]

      (11) Chen, S. H.; Xu, Y.; Lü, B. L.; Wu, D. Acta Phys. -Chim. Sin. 2011, 27, 2933. [陈淑海, 徐耀, 吕宝亮, 吴东. 物理化学学报, 2011, 27, 2933.] doi: 10.3866/PKU.WHXB20112933

    12. [12]

      (12) Wang, X. D.; Caruso, R. A. J. Mater. Chem. 2011, 21, 20. doi: 10.1039/c0jm02620d

    13. [13]

      (13) Lee, J. H.; Choi, H. S.; Lee, J. H.; Kim, Y. J.; Suh, S. J.; Chi, C. S.; Oh, H. J. J. Cryst. Growth 2009, 311, 638. doi: 10.1016/j.jcrysgro.2008.09.065

    14. [14]

      (14) Yang, K. H.; Chang, C. M. Mater. Res. Bull. 2013, 48, 372. doi: 10.1016/j.materresbull.2012.10.040

    15. [15]

      (15) Chan, S. C.; Barteau, M. A. Langmuir 2005, 21, 5588. doi: 10.1021/la046887k

    16. [16]

      (16) Xiao, F. X. J. Phys. Chem. C 2012, 116, 16487. doi: 10.1021/jp3034984

    17. [17]

      (17) Xiao, F. X. RSC Adv. 2012, 2, 12699. doi: 10.1039/c2ra22621a

    18. [18]

      (18) Fu, P. F.; Zhang, P. Y. Appl. Catal. B; Environ. 2010, 96, 176. doi: 10.1016/j.apcatb.2010.02.017

    19. [19]

      (19) Li, J.; Zeng, H. C. Chem. Mater. 2006, 18, 4270. doi: 10.1021/cm060362r

    20. [20]

      (20) Jin, Y. D.; Kang, X. F.; Song, Y. H.; Zhang, B. L.; Cheng, G. J.; Dong, S. J. Anal. Chem. 2001, 73, 2843. doi: 10.1021/ac001207d

    21. [21]

      (21) Tsunoyama, H.; Sakurai, H.; Tsukuda, T. Chem. Phys. Lett. 2006, 429, 528. doi: 10.1016/j.cplett.2006.08.066

    22. [22]

      (22) Tsunoyama, H.; Sakurai, H.; Ichikuni, N.; Negishi, Y.; Tsukuda, T. Langmuir 2004, 20, 11293. doi: 10.1021/la0478189

    23. [23]

      (23) Ye, Q.; Hu, H. Y.; Yu, B.; Wang, X. L.; Li, S. B.; Zhou, F. Phys. Chem. Chem. Phys. 2010, 12, 5480. doi: 10.1039/b925002f

    24. [24]

      (24) Bowker, M.; James, D.; Stone, P.; Bennett, R.; Perkins, N.; Millard, L.; Greaves, J.; Dickinson, A. J. Catal. 2003, 217, 427.

    25. [25]

      (25) Bian, Z. F.; Zhu, J.; Cao, F. L.; Lu, Y. F.; Li, H. X. Chem. Commun. 2009, 25, 3789.

    26. [26]

      (26) Fu, Q.; Saltsburg, H.; Flytzani-Stephanopoulos, M. Science 2003, 301, 935. doi: 10.1126/science.1085721

    27. [27]

      (27) Zangmeister, C. D.; Picraux, L. B.; Van Zee, R. D.; Yao, Y. X.; Tour, J. M. Chem. Phys. Lett. 2007, 442, 390. doi: 10.1016/j.cplett.2007.06.012

    28. [28]

      (28) Ioannides, T.; Verykios, X. E. J. Catal. 1996, 161, 560. doi: 10.1006/jcat.1996.0218

    29. [29]

      (29) Yan, H. J.; Yang, J. H.; Ma, G. J.; Wu, G. P.; Zong, X.; Lei, Z. B.; Shi, J. Y.; Li, C. J. Catal. 2009, 266, 165. doi: 10.1016/j.jcat.2009.06.024

    30. [30]

      (30) Bera, P.; Priolkar, K. R.; Gayen, A.; Sarode, P. R.; Hegde, M. S.; Emura, S.; Kumashiro, R.; Jayaram, V.; Subbanna, G. N. Chem. Mater. 2003, 15, 2049. doi: 10.1021/cm0204775

    31. [31]

      (31) Titkov, A. I.; Salanov, A. N.; Koscheev, S. V.; Boronin, A. I. Surf. Sci. 2006, 600, 4119. doi: 10.1016/j.susc.2006.01.131

    32. [32]

      (32) Zhong, Z.; Lin, J. Y.; Teh, S. P.; Teo, J.; Dautzenberg, F. M. Adv. Funct. Mater. 2007, 17, 1402.

    33. [33]

      (33) Wang, D. A.; Liu, Y.; Wang, C.W.; Zhou, F.; Liu, W. M. ACS Nano 2009, 3, 1249. doi: 10.1021/nn900154z

    34. [34]

      (34) Li, H. X.; Bian, Z. F.; Zhu, J.; Huo, Y. N.; Li, H.; Lu, Y. F. J. Am. Chem. Soc. 2007, 129, 4538. doi: 10.1021/ja069113u

    35. [35]

      (35) Yin, S.; Hasegawa, H.; Maeda, D.; Ishitsuka, M.; Sato, T. J. Photochem. Photobiol. A: Chem. 2004, 163, 1. doi: 10.1016/S1010-6030(03)00289-2

    36. [36]

      (36) You, X. F.; Chen, F.; Zhang, J. L.; Anpo, M. Catal. Lett. 2005, 102, 247. doi: 10.1007/s10562-005-5863-5

    37. [37]

      (37) Wu, Z. B.; Sheng, Z. Y.; Wang, H. Q.; Liu, Y. Chemosphere 2009, 77, 264. doi: 10.1016/j.chemosphere.2009.07.060

    38. [38]

      (38) Sheng, Z. Y.; Wu, Z. B.; Liu, Y.; Wang, H. Q. Catal. Commun. 2008, 9, 1941. doi: 10.1016/j.catcom.2008.03.022

    39. [39]

      (39) Fu, P. F.; Zhang, P. Y.; Li, J. Appl. Catal. B: Environ. 2011, 105, 220. doi: 10.1016/j.apcatb.2011.04.021


  • 加载中
    1. [1]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    2. [2]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    3. [3]

      Xueqi Yang Juntao Zhao Jiawei Ye Desen Zhou Tingmin Di Jun Zhang . Modulating the d-band center of NNU-55(Fe) for enhanced CO2 adsorption and photocatalytic activity. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-. doi: 10.1016/j.actphy.2025.100074

    4. [4]

      Fangxuan Liu Ziyan Liu Guowei Zhou Tingting Gao Wenyu Liu Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071

    5. [5]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    6. [6]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    7. [7]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    8. [8]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    9. [9]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    10. [10]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    11. [11]

      Yu Wang Haiyang Shi Zihan Chen Feng Chen Ping Wang Xuefei Wang . Hollow AgPt@Pt core-shell cocatalyst with electron-rich Ptδ- shell for boosting selectivity of photocatalytic H2O2 production for faceted BiVO4. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-. doi: 10.1016/j.actphy.2025.100081

    12. [12]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    13. [13]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    14. [14]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    15. [15]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    16. [16]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    17. [17]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    18. [18]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    19. [19]

      Xiaofang Li Zhigang Wang . Modulating dz2-orbital occupancy of Au cocatalysts for enhanced photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-. doi: 10.1016/j.actphy.2025.100080

    20. [20]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

Metrics
  • PDF Downloads(629)
  • Abstract views(626)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return