Citation:
WANG Shi-Mao, DONG Wei-Wei, FANG Xiao-Dong, DENG Zan-Hong, SHAO Jing-Zhen, HU Lin-Hua, ZHU Jun. Modification of Single-Crystal TiO2 Nanorod Arrays and Its Application in Quantum Dot-Sensitized Solar Cells[J]. Acta Physico-Chimica Sinica,
;2014, 30(5): 873-880.
doi:
10.3866/PKU.WHXB201403042
-
Single-crystal TiO2 nanorod arrays (TNRs) are proposed to increase the electron transport rate and improve the cell performance of quantum dot- sensitized solar cells (QDSCs). However, the specific surface area of TNRs is much lower than that of TiO2 nanoparticle films, which leads to lower quantum dot adsorption and lower power conversion efficiency (η). In our investigation, TiCl4 solution was used to modify single-crystal rutile TNRs. The modification resulted in the synthesis of a large number of TiO2 nanoparticles on the surfaces of nanorods, which significantly increased the surface area and quantum dot adsorption of TNRs. When the TiCl4 modification time was 60 h, the short-circuit photocurrent density (Jsc) and η of TNRs based CdS/CdSe co-sensitized QDSCs increased from (2.93±0.07) mA·cm-2 and 0.36%±0.02% to (8.19±0.12) mA·cm-2 and 1.17%±0.07%, respectively. In addition, intensity modulated photocurrent spectroscopy measurements indicated that the electron transport rate in modified single-crystal rutile TNRs is faster than that in anatase TiO2 nanoparticle films, which is a desirable result.
-
-
-
[1]
(1) Yu, W.W.; Peng, X. Angew. Chem. Int. Edit. 2002, 41, 2368.
-
[2]
(2) Chang, C. H.; Lee, Y. L. Appl. Phys. Lett. 2007, 91, 053503. doi: 10.1063/1.2768311
-
[3]
(3) Nozik, A. J. Inorg. Chem. 2005, 44, 6893. doi: 10.1021/ic0508425
-
[4]
(4) Pandey, A.; Guyot-Sionnest, P. J. Phys. Chem. Lett. 2010, 1, 45. doi: 10.1021/jz900022z
-
[5]
(5) Vogel, R.; Hoyer, P.; Weller, H. J. Phys. Chem. 1994, 98, 3183. doi: 10.1021/j100063a022
-
[6]
(6) Guo, X. D.; Ma, B. B.; Wang, L. D.; Gao, R.; Dong, H. P.; Qiu, Y. Acta Phys. -Chim. Sin. 2013, 29, 1240. [郭旭东, 马蓓蓓, 王立铎, 高瑞, 董豪鹏, 邱勇. 物理化学学报, 2013, 29, 1240.] doi: 10.3866/PKU.WHXB201303261
-
[7]
(7) Kamat, P. V. J. Phys. Chem. Lett. 2013, 4, 908. doi: 10.1021/jz400052e
-
[8]
(8) Emin, S.; Yanagida, M.; Peng, W.; Han, L. Sol. Energy Mater. Sol. Cells 2012, 101, 5. doi: 10.1016/j.solmat.2012.02.014
-
[9]
(9) Hanna, M. C.; Nozik, A. J. J. Appl. Phys. 2006, 100, 074510. doi: 10.1063/1.2356795
-
[10]
(10) Shen, Q.; Yamada, A.; Tamura, S.; Toyoda, T. Appl. Phys. Lett. 2010, 97, 123107. doi: 10.1063/1.3491245
-
[11]
(11) Chen, L. Y.; Yang, Z.; Chen, C. Y.; Ho, T. Y.; Liu, P.W.; Chang, H. T. Nanoscale 2011, 3, 4940. doi: 10.1039/c1nr10892a
-
[12]
(12) Seol, M.; Kim, H.; Tak, Y.; Yong, K. Chem. Commun. 2010, 46, 5521. doi: 10.1039/c0cc00542h
-
[13]
(13) Sun, W. T.; Yu, Y.; Pan, H. Y.; Gao, X. F.; Chen, Q.; Peng, L. M. J. Am. Chem. Soc. 2008, 130, 1124. doi: 10.1021/ja0777741
-
[14]
(14) Cao, C.; Hu, C.; Shen, W.; Wang, S.; Tian, Y.; Wang, X. J. Alloy. Compd. 2012, 523, 139. doi: 10.1016/j.jallcom.2012.01.126
-
[15]
(15) Liu, B.; Aydil, E. S. J. Am. Chem. Soc. 2009, 131, 3985. doi: 10.1021/ja8078972
-
[16]
(16) Wang, J.; Zhang, T.; Wang, D.; Pan, R.; Wang, Q.; Xia, H. J. Alloy. Compd. 2013, 551, 82. doi: 10.1016/j.jallcom.2012.09.113
-
[17]
(17) Tao, R. H.; Wu, J. M.; Xue, H. X.; Song, X. M.; Pan, X.; Fang, X. Q.; Fang, X. D.; Dai, S. Y. J. Power Sources 2010, 195, 2989. doi: 10.1016/j.jpowsour.2009.11.075
-
[18]
(18) Wang, S. M.; Dong, W.W.; Tao, R. H.; Deng, Z. H.; Shao, J. Z.; Hu, L. H.; Zhu, J.; Fang, X. D. J. Power Sources 2013, 235, 193. doi: 10.1016/j.jpowsour.2013.01.106
-
[19]
(19) Lee, Y. L.; Lo, Y. S. Adv. Funct. Mater. 2009, 19, 604. doi: 10.1002/adfm.v19:4
-
[20]
(20) Zhang, R.; Luo, Q. P.; Chen, H. Y.; Yu, X. Y.; Kuang, D. B.; Su, C. Y. ChemPhysChem 2012, 13, 1435. doi: 10.1002/cphc.v13.6
-
[21]
(21) Liu, Q.; Zhou, Y.; Duan, Y.; Wang, M.; Zhao, X.; Lin, Y. J. Alloy. Compd. 2013, 548, 161. doi: 10.1016/j.jallcom.2012.08.125
-
[22]
(22) Yu, X. Y.; Liao, J. Y.; Qiu, K. Q.; Kuang, D. B.; Su. C. Y. ACS Nano 2011, 5, 9494.
-
[23]
(23) Zhang, Y.; Zhu, J.; Yu, X.; Wei, J.; Hu, L.; Dai, S. Sol. Energy 2012, 86, 964. doi: 10.1016/j.solener.2012.01.006
-
[24]
(24) Zhu, J.; Yu, X. C.; Wang, S. M.; Dong, W.W.; Hu, L. H.; Fang, X. D.; Dai, S. Y. Acta Phys. -Chim. Sin. 2013, 29, 533. [朱俊, 余学超, 王时茂, 董伟伟, 胡林华, 方晓东, 戴松元. 物理化学学报, 2013, 29, 533.] doi: 10.3866/PKU.WHXB201212124
-
[25]
(25) Mora-Seró, I.; Giménez, S.; Fabregat-Santia , F.; Gómez, R.; Shen, Q.; Toyoda, T.; Bisquert, J. Accounts Chem. Res. 2009, 42, 1848. doi: 10.1021/ar900134d
-
[26]
(26) Zhang, Q.; Guo, X.; Huang, X.; Huang, S.; Li, D.; Luo, Y.; Shen, Q.; Toyoda, T.; Meng, Q. Phys. Chem. Chem. Phys. 2011, 13, 4659. doi: 10.1039/c0cp02099k
-
[27]
(27) Yella, A.; Lee, H.W.; Tsao, H. N.; Yi, C.; Chandiran, A. K.; Nazeeruddin, M. K.; Diau, E.W. G.; Yeh, C. Y.; Zakeeruddin, S. M.; Grätzel, M. Science 2011, 334, 629. doi: 10.1126/science.1209688
-
[28]
(28) Kambe, S.; Nakade, S.; Wada, Y.; Kitamura, T.; Yanagida, S. J. Mater. Chem. 2002, 12, 723. doi: 10.1039/b105142n
-
[29]
(29) Sommeling, P. M.; O′Regan, B. C.; Haswell, R. R.; Smit, H. J. P.; Bakker, N. J.; Smits, J. J. T.; Kroon, J. M.; Van Roosmalen, J. A. M. J. Phys. Chem. B 2006, 110, 19191. doi: 10.1021/jp061346k
-
[30]
(30) Hu, L.; Dai, S.; Weng, J.; Xiao, S.; Sui, Y.; Huang, Y.; Chen, S.; Kong, F.; Pan, X.; Liang, L.; Wang, K. J. Phys. Chem. B 2007, 111, 358. doi: 10.1021/jp065541a
-
[31]
(31) Enache-Pommer, E.; Liu, B.; Aydil, E. S. Phys. Chem. Chem. Phys. 2009, 11, 9648. doi: 10.1039/b915345d
-
[32]
(32) Yang, M.; Ding, B.; Lee, S.; Lee, J. K. J. Phys. Chem. C 2011, 115, 14534. doi: 10.1021/jp2025126
-
[33]
(33) Park, N. G.; Van de Lagemaat, J.; Frank, A. J. J. Phys. Chem. B 2000, 104, 8989.
-
[1]
-
-
-
[1]
Jiaxin Su , Jiaqi Zhang , Shuming Chai , Yankun Wang , Sibo Wang , Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-0. doi: 10.3866/PKU.WHXB202408012
-
[2]
Shengjuan Huo , Xiaoyan Zhang , Xiangheng Li , Xiangning Li , Tianfang Chen , Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127
-
[3]
Ruiqing LIU , Wenxiu LIU , Kun XIE , Yiran LIU , Hui CHENG , Xiaoyu WANG , Chenxu TIAN , Xiujing LIN , Xiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441
-
[4]
Bing LIU , Huang ZHANG , Hongliang HAN , Changwen HU , Yinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398
-
[5]
Gaopeng Liu , Lina Li , Bin Wang , Ningjie Shan , Jintao Dong , Mengxia Ji , Wenshuai Zhu , Paul K. Chu , Jiexiang Xia , Huaming Li . Construction of Bi Nanoparticles Loaded BiOCl Nanosheets Ohmic Junction for Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(7): 2306041-0. doi: 10.3866/PKU.WHXB202306041
-
[6]
Xiufang Wang , Donglin Zhao , Kehua Zhang , Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025
-
[7]
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
-
[8]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
-
[9]
Yameen Ahmed , Xiangxiang Feng , Yuanji Gao , Yang Ding , Caoyu Long , Mustafa Haider , Hengyue Li , Zhuan Li , Shicheng Huang , Makhsud I. Saidaminov , Junliang Yang . Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(6): 2303057-0. doi: 10.3866/PKU.WHXB202303057
-
[10]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[11]
Bizhu Shao , Huijun Dong , Yunnan Gong , Jianhua Mei , Fengshi Cai , Jinbiao Liu , Dichang Zhong , Tongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026
-
[12]
Jianan Hong , Chenyu Xu , Yan Liu , Changqi Li , Menglin Wang , Yanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099
-
[13]
Wei HE , Jing XI , Tianpei HE , Na CHEN , Quan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364
-
[14]
Zeyuan WANG , Songzhi ZHENG , Hao LI , Jingbo WENG , Wei WANG , Yang WANG , Weihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021
-
[15]
Xiaoyao YIN , Wenhao ZHU , Puyao SHI , Zongsheng LI , Yichao WANG , Nengmin ZHU , Yang WANG , Weihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309
-
[16]
Ying Liang , Yuheng Deng , Shilv Yu , Jiahao Cheng , Jiawei Song , Jun Yao , Yichen Yang , Wanlei Zhang , Wenjing Zhou , Xin Zhang , Wenjian Shen , Guijie Liang , Bin Li , Yong Peng , Run Hu , Wangnan Li . Machine learning-guided antireflection coatings architectures and interface modification for synergistically optimizing efficient and stable perovskite solar cells. Acta Physico-Chimica Sinica, 2025, 41(9): 100098-0. doi: 10.1016/j.actphy.2025.100098
-
[17]
Xiaotian ZHU , Fangding HUANG , Wenchang ZHU , Jianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260
-
[18]
Zhuoya WANG , Le HE , Zhiquan LIN , Yingxi WANG , Ling LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194
-
[19]
Yikai Wang , Xiaolin Jiang , Haoming Song , Nan Wei , Yifan Wang , Xinjun Xu , Cuihong Li , Hao Lu , Yahui Liu , Zhishan Bo . Thickness-Insensitive, Cyano-Modified Perylene Diimide Derivative as a Cathode Interlayer Material for High-Efficiency Organic Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-0. doi: 10.3866/PKU.WHXB202406007
-
[20]
Guangming YIN , Huaiyao WANG , Jianhua ZHENG , Xinyue DONG , Jian LI , Yi'nan SUN , Yiming GAO , Bingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086
-
[1]
Metrics
- PDF Downloads(592)
- Abstract views(945)
- HTML views(10)