Citation:
GUO Zhang-Long, HUANG Li-Qiong, CHU Wei, LUO Shi-Zhong. Effects of Promoter on NiMgAl Catalyst Structure and Performance for Carbon Dioxide Reforming of Methane[J]. Acta Physico-Chimica Sinica,
;2014, 30(4): 723-728.
doi:
10.3866/PKU.WHXB201402242
-
Catalysts were prepared by adding different types of promoter (Co, Ir, or Pt) to the supported nickel catalyst NiMgAl samples. These catalysts were characterized by H2 temperature-programmed reduction (H2-TPR), CO2/CH4 temperature-programmed surface reactions (CO2/CH4-TPSR), and CO2 temperatureprogrammed desorption (CO2-TPD). The effects of the catalyst structure on catalytic performance in the methane dry reforming reaction with carbon dioxide were investigated. The addition of a small amount of promoter (Pt or Ir) can lower the reduction temperature of the nickel active component, and enhance performance in the methane dry reforming reaction. The catalysts with Co or Ir promoter feature lower activation energies than the unmodified NiMgAl catalyst. The activation energy was 51.8 kJ·mol-1 for the NiMgAl sample, decreasing to 26.4 kJ·mol-1 for the NiPtMgAl catalyst, which showed overall better catalytic performance. Results of CH4-TPSR and CO2-TPSR demonstrate that the NiPtMgAl catalyst can generate more active carbon species on the catalyst surface. The CO2-TPD results show that adding a promoter can increase the CO2 adsorbed/desorbed amount compared with the unmodified NiMgAl catalyst over the same reaction temperature range.
-
-
-
[1]
(1) Wang, Q.; Luo, J. Z.; Zhong, Z. Y.; Borgna, A. Energ. Environ. Sci. 2011, 4, 42. doi: 10.1039/c0ee00064g
-
[2]
(2) Chu,W.; Ran, M. F.; Zhang, X.;Wang, N.;Wang, Y. F.; Xie, H. P.; Zhao, X. S. J. Energy Chem. 2013, 22, 136. doi: 10.1016/S2095-4956(13)60018-2
-
[3]
(3) Hansen, J.; Sato, M. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 16109. doi: 10.1073/pnas.0406982101
-
[4]
(4) von der Assen, N.; Jung, J.; Bardow, A. Energ. Environ. Sci. 2013, 6, 2721. doi: 10.1039/c3ee41151f
-
[5]
(5) Serrano-Ruiz, J. C.; Dumesic, J. A. Energ. Environ. Sci. 2011, 4, 83. doi: 10.1039/c0ee00436g
-
[6]
(6) Ashcroft, A. T.; Cheetham, A. K.; Green, M. L. H.; Vernon, P. D. F. Nature 1991, 352, 225. doi: 10.1038/352225a0
-
[7]
(7) Ramos, L.; Zeppieri, S. Fuel 2013, 110, 141. doi: 10.1016/j.fuel.2012.12.045
-
[8]
(8) Chu,W.;Wang, L. N.; Chernavsk, P. A.; Khodakov, A. Y. Angew. Chew. Int. Edit. 2008, 47, 5052. doi: 10.1002/anie.v47:27
-
[9]
(9) Ha, K. S.; Bae, J.W.;Woo, K. J.; Jun, K.W. Environ. Sci. Technol. 2010, 44, 1412. doi: 10.1021/es902784x
-
[10]
(10) Wang, N.; Chu,W.; Zhang, T.; Zhao, X. S. Chem. Eng. J. 2011, 170, 457. doi: 10.1016/j.cej.2010.12.042
-
[11]
(11) Aldashukurova, G. B.; Mironenko, A. V.; Mansurov, Z. A.; Shikina, N. V.; Yashnik, S. A.; Kuznetsov, V. V.; Ismagilov, Z. R. J. Energy Chem. 2013, 22, 811. doi: 10.1016/S2095-4956(13)60108-4
-
[12]
(12) Zhang, J. G.;Wang, H.; Dalai, A. K. J. Catal. 2007, 249, 300 300. doi: 10.1016/j.jcat.2007.05.004
-
[13]
(13) Crisafulli, C.; Scire, S.; Minico, S.; Solarino, L. Appl. Catal. AGen. 2002, 225, 1. doi: 10.1016/S0926-860X(01)00585-3
-
[14]
(14) Meshkani, F.; Rezaei, M. Int. J. Hydrog. Energy 2010, 35, 10295. doi: 10.1016/j.ijhydene.2010.07.138
-
[15]
(15) Chen, Y. G.; Tomishige, K.; Yokoyama, K.; Fujimoto, K. Appl. Catal. A-Gen. 1997, 165, 335. doi: 10.1016/S0926-860X(97)00216-0
-
[16]
(16) Jose-Alonso, D. S.; Illan- mez, M. J.; Roman-Martinez, M. C. Int. J. Hydrog. Energy 2013, 38, 2230. doi: 10.1016/j.ijhydene.2012.11.080
-
[17]
(17) Pawelec, B.; Damyanova, S.; Arishtirova, K.; Fierro, J. L. G.; Petrov, L. Appl. Catal. A-Gen. 2007, 323, 188. doi: 10.1016/j.apcata.2007.02.017
-
[18]
(18) Garcia-Dieguez, M.; Pieta, I. S.; Herrera, M. C.; Larrubia, M. A.; Alemany, L. J. J. Catal. 2010, 270, 136. doi: 10.1016/j.jcat.2009.12.010
-
[19]
(19) Huang, T.; Huang,W.; Huang, J.; Ji, P. Fuel Process. Technol. 2011, 92, 1868. doi: 10.1016/j.fuproc.2011.05.002
-
[20]
(20) Xue,W. J.; Zhang, X. Y.; Li, P.; Liu, Z. T.; Hao, Z. P.; Ma, C. Y. Acta Phys. -Chim. Sin. 2011, 27, 1730. [薛雯娟, 张新艳, 李鹏, 刘昭铁, 郝郑平, 麻春艳. 物理化学学报, 2011, 27, 1730.]d oi: 10.3866/PKU.WHXB20110719
-
[21]
(21) Yao, L.; Zhu, J. Q.; Peng, X. X.; Tong, D. M.; Hu, C.W. Int. J. Hydrog. Energy 2013, 38, 7268. doi: 10.1016/j.ijhydene.2013.02.126
-
[22]
(22) Wang, L.; Li, D. L.; Koike, M.;Watanable, H.; Xu, Y.; Nakagawa, Y.; Tomishige, K. Fuel 2013, 112, 654. doi: 10.1016/j.fuel.2012.01.073
-
[23]
(23) Lin,W.W.; Cheng, H. Y.; He, L. M.; Yu, Y. C.; Zhao, F. Y. J. Catal. 2013, 303, 110. doi: 10.1016/j.jcat.2013.03.002
-
[24]
(24) de Miguel, S. R.; Vilella, I. M. J.; Maina, S. P.; Jose-Alonso, D. S.; Roman-Martinez, M. C.; Illan- mez, M. J. Appl. Catal. AGen. 2012, 435, 10.
-
[25]
(25) El-Temtamy, S. A.; Ghoneim, S. A.; El-Morsy, A. K.; El-Naggar, A. Y.; El-Salamouny, R. A. Petrol Sci. Technol. 2009, 27, 1661. doi: 10.1080/10916460802455897
-
[26]
(26) Yu, X. P.;Wang, N.; Chu,W.; Liu, M. Chem. Eng. J. 2012, 209, 623. doi: 10.1016/j.cej.2012.08.037
-
[27]
(27) Li, C. L.; Fu, Y. L.; Bian, G. Z. Acta Phys. -Chim. Sin. 2003, 19, 902. [李春林, 伏义路, 卞国柱. 物理化学学报, 2003, 19, 902.] doi: 10.3866/PKU.WHXB20031004
-
[28]
(28) Qin, Z. Q.; Gao,W. G.;Wang, H.; Han, C.; Guo,W. Chemical Industry and Engineering Progress 2013, 32, 820. [覃志强, 高文桂, 王华, 韩冲, 郭伟. 化工进展, 2013, 32, 820.]
-
[29]
(29) Wang, N.; Shen, K.; Yu, X. P.; Qian,W. Z.; Chu,W. Catal. Sci. Technol. 2013, 3, 2278. doi: 10.1039/c3cy00299c
-
[1]
-
-
-
[1]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029
-
[2]
Jiayi Yang , Jianxiu Hao , Huacong Zhou , Quansheng Liu . “Gorgeous Transformation” of Carbon Dioxide into Cyclic Carbonates: Catalyst Types and Roles. University Chemistry, 2026, 41(2): 178-189. doi: 10.12461/PKU.DXHX202502105
-
[3]
Yan Kong , Wei Wei , Lekai Xu , Chen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049
-
[4]
Yucai Zhang , Jun Jiang . Electrochemical Carbon Dioxide Reduction to Ethylene. University Chemistry, 2026, 41(2): 190-196. doi: 10.12461/PKU.DXHX202503006
-
[5]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[6]
Qiang Zhang , Yuanbiao Huang , Rong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040
-
[7]
Hailian Cheng , Shuaiqiang Jia , Chunjun Chen , Haihong Wu , Buxing Han . Electrocatalytic CO2 Conversion: A Key to Unlocking a Low-Carbon Future. University Chemistry, 2026, 41(2): 1-13. doi: 10.12461/PKU.DXHX202502023
-
[8]
Hui-Ying Chen , Hao-Lin Zhu , Pei-Qin Liao , Xiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046
-
[9]
Jianan Hong , Chenyu Xu , Yan Liu , Changqi Li , Menglin Wang , Yanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099
-
[10]
Bizhu Shao , Huijun Dong , Yunnan Gong , Jianhua Mei , Fengshi Cai , Jinbiao Liu , Dichang Zhong , Tongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026
-
[11]
Haiqiang Lin , Weizheng Weng , Jingdong Lin , Mingshu Chen , Xueming Fang , Lefu Yang . Diverse Variables-Driven Catalytic Optimization: Experimental Enhancement and Instructional Design for Selective Methane Oxidation on Supported Nickel-based Catalysts. University Chemistry, 2025, 40(11): 327-336. doi: 10.12461/PKU.DXHX202505106
-
[12]
Haoran Zhang , Yaxin Jin , Peng Kang , Sheng Zhang . The Convergence and Innovative Application of Artificial Intelligence in Scientific Research: A Case Study of Electrocatalytic Carbon Dioxide Reduction in the Context of the Dual-Carbon Strategy. University Chemistry, 2025, 40(9): 148-155. doi: 10.12461/PKU.DXHX202412099
-
[13]
Hailang JIA , Pengcheng JI , Hongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398
-
[14]
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
-
[15]
Xinyu Xu , Jiale Lu , Bo Su , Jiayi Chen , Xiong Chen , Sibo Wang . Steering charge dynamics and surface reactivity for photocatalytic selective methane oxidation to ethane over Au/Ti-CeO2. Acta Physico-Chimica Sinica, 2025, 41(11): 100153-0. doi: 10.1016/j.actphy.2025.100153
-
[16]
Xiaofei Liu , He Wang , Li Tao , Weimin Ren , Xiaobing Lu , Wenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008
-
[17]
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
-
[18]
Wei HE , Jing XI , Tianpei HE , Na CHEN , Quan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364
-
[19]
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016
-
[20]
Xiaolong Li , Shiqi Zhong , Xiangfeng Wei , Zhiqiang Liu , Pan Zhan , Jiehua Liu . Carbon Dioxide: From the Past to the Future. University Chemistry, 2026, 41(2): 242-247. doi: 10.12461/PKU.DXHX202503013
-
[1]
Metrics
- PDF Downloads(613)
- Abstract views(1112)
- HTML views(21)
Login In
DownLoad: