Citation: XU Li-Hong, KAN Cai-Xia, WANG Chang-Shun, CONG Bo, NI Yuan, SHI Da-Ning. Synthesis of Ag Nanostructures with Controlled Shapes by a Polyvinylpyrrolidone-Assisted Hydrothermal Method[J]. Acta Physico-Chimica Sinica, ;2014, 30(3): 569-575. doi: 10.3866/PKU.WHXB201312253 shu

Synthesis of Ag Nanostructures with Controlled Shapes by a Polyvinylpyrrolidone-Assisted Hydrothermal Method

  • Received Date: 28 October 2013
    Available Online: 25 December 2013

    Fund Project: 国家自然科学基金(11274173,51032002,61222403,11374159) (11274173,51032002,61222403,11374159)中央高校基本科研业务费专项资金(NZ2013304)资助项目 (NZ2013304)

  • Ag nanostructures with well-defined shapes and optical resonances have been masssynthesized by a hydrothermal method. Polyvinylpyrrolidone (PVP) polymers with average molecular weights (MW) of 8000, 40000, 160000, and 360000 denoted as K17, K30, K60, and K90, respectively, were chosen as surfactants (K is usually used to represent the characteristic value of relative viscosity of the PVP solution). It was found that the larger MW of PVP, the higher relative viscosity of the PVP solution. All of the reactants were transferred into a 60 mL stainless steel autoclave and heated at a certain temperature for hours. Five-fold twinned Ag nanodecahedrons with nearly uniform size were synthesized in the aqueous solution of K17. Ag nanowires were obtained with the presence of K30, K60, and K90 in ethylene glycol (EG) solution, and the aspect ratios of the Ag nanowires increased with increasing the MW of PVP. The morphology and microstructures of the obtained products were characterized by transmission electron microscopy (TEM) and field emission-scanning electron microscopy (FE-SEM). The surface plasmon resonance (SPR) spectra of the Ag nanostructures were measured using an UV-Vis spectrophotometer. The results showed that the surface plasma resonance of the Ag nanostructures was dependent on their shape and size.

  • 加载中
    1. [1]

      (1) Lu,W.; Lieber, C. M. Nat. Mater. 2007, 6, 841. doi: 10.1038/nmat2028

    2. [2]

      (2) Lal, S.; Link, S.; Halas, N. J. Nat. Photonics 2007, 1, 641. doi: 10.1038/nphoton.2007.223

    3. [3]

      (3) Xiong, Y.;Wiley, B. J.; Xia, Y. Angew. Chem. Int. Edit. 2007, 46, 7157.

    4. [4]

      (4) Feng, M.; Zhang, M.; Song, J.; Li, X.; Yu, S. ACS Nano 2011, 5, 6726. doi: 10.1021/nn202296h

    5. [5]

      (5) Pedireddy, S.; Li, A.; Bosman, M.; Phang, I. Y.; Li, S.; Ling, X. Y. J. Phys. Chem. C 2013, 117, 16640. doi: 10.1021/jp4063077

    6. [6]

      (6) Mackenzie, J. D.; Bescher, E. P. Accounts Chem. Res. 2007, 40, 810. doi: 10.1021/ar7000149

    7. [7]

      (7) Reddy, M. V.; Jose, R.; Teng, T. H.; Chowdari, B. V. R.; Ramakrishna, S. Electrochim. Acta 2010, 55, 3109. doi: 10.1016/j.electacta.2009.12.095

    8. [8]

      (8) Koch, C. C. Rev. Adv. Mater. Sci. 2003, 5, 91.

    9. [9]

      (9) Zhang, D. L. Prog. Mater. Sci. 2004, 49, 537. doi: 10.1016/S0079-6425(03)00034-3

    10. [10]

      (10) Fang, J. Y.; Qin, S. Q.; Zhang, X. A.;Wang, G.;Wang, F.; Chang, S. L. Micro & Nano Lett. 2011, 6, 971. doi: 10.1049/mnl.2011.0480

    11. [11]

      (11) Duan, J. Y.; Zhang, Q. X.;Wang, Y. L.; Guan, J. G. Acta Phys. -Chim. Sin. 2009, 25, 1405. [段君元, 章桥新, 王一龙, 官建国. 物理化学学报, 2009, 25, 1405.] doi: 10.3866/PKU.WHXB20090731

    12. [12]

      (12) Wu, H.; Kuo, C.; Huang, M. H. Langmuir 2010, 26, 12307. doi: 10.1021/la1015065

    13. [13]

      (13) Li, Z. C.; Shang, T. M.; Zhou, Q. F.; Feng, K. Micro & Nano Lett. 2011, 6, 90. doi: 10.1049/mnl.2010.0183

    14. [14]

      (14) Silva, J. N.; Saade, J.; Farias, P. M. A.; Falcão, E. H. L. Advances in Nanoparticles 2013, 2, 217. doi: 10.4236/anp.2013.23030

    15. [15]

      (15) Wang, Y.; Zheng, Y.; Huang, C. Z.; Xia, Y. J. Am. Chem. Soc. 2013, 135, 1941. doi: 10.1021/ja311503q

    16. [16]

      (16) Zhang, Q.; Ge, J.; Pham, T.; ebl, J.; Hu, Y.; Lu, Z.; Yin, Y. Angew. Chem. Int. Edit. 2009, 48, 3516. doi: 10.1002/anie.v48: 19

    17. [17]

      (17) Huang, X.; Qi, X.; Huang, Y.; Li, S.; Xue, C.; Gan, C. L.; Boey, F.; Zhang, H. ACS Nano 2010, 4, 6196. doi: 10.1021/nn101803m

    18. [18]

      (18) Bordenave, M. D.; Scarpettini, A. F.; Roldán, M. V.; Pellegri, N.; Bragas, A. V. Mater. Chem. Phys. 2013, 139, 100. doi: 10.1016/j.matchemphys.2012.12.061

    19. [19]

      (19) Korte, K. E.; Skrabalak, S. E.; Xia, Y. J. Mater. Chem. 2008, 18, 437. doi: 10.1039/b714072j

    20. [20]

      (20) Chen, D.; Qiao, X.; Qiu, X.; Chen, J. G.; Jiang, R. J. Colloid Interface Sci. 2010, 344, 286. doi: 10.1016/j.jcis.2009.12.055

    21. [21]

      (21) Im, S. H.; Lee, Y. T.;Wiley, B.; Xia, Y. Angew. Chem. Int. Edit. 2005, 117, 2192.

    22. [22]

      (22) Kan, C.;Wang, C.; Li, H.; Qi, J.; Zhu, J.; Li, Z.; Shi, D. Small 2010, 6, 1768. doi: 10.1002/smll.201000600

    23. [23]

      (23) Sun, Y.; Xia, Y. Science 2002, 298, 2176. doi: 10.1126/science.1077229

    24. [24]

      (24) Wiley, B.; Herricks, T.; Sun, Y.; Xia, Y. Nano Lett. 2004, 4, 1733. doi: 10.1021/nl048912c

    25. [25]

      (25) Tang, X.; Tsuji, M.; Jiang, P.; Nishio, M.; Jang, S.; Yoon, S. Colloid Surface A 2009, 338, 33. doi: 10.1016/j.colsurfa.2008.12.029

    26. [26]

      (26) Zhu, J.; Kan, C.; Zhu, X.;Wan, J.; Han, M.; Zhao, Y.;Wang, B.; Wang, G. J. Mater. Res. 2007, 22, 1479. doi: 10.1557/JMR.2007.0222

    27. [27]

      (27) Zhao, T.; Sun, R.; Yu, S.; Zhang, Z.; Zhou, L.; Huang, H.; Du, R. Colloid Surface A 2010, 366, 197. doi: 10.1016/j.colsurfa.2010.06.005

    28. [28]

      (28) Kottmann, J. P.; Martin, O. J. F.; Smith, D. R.; Schultz, S. Phys. Rev. B 2001, 64, 235402. doi: 10.1103/PhysRevB.64.235402

    29. [29]

      (29) Kottmann, J. P.; Martin, O. J. F.; Smith, D. R.; Schultz, S. Opt. Express 2000, 6, 213. doi: 10.1364/OE.6.000213

    30. [30]

      (30) Rycenga, M.; Cobley, C. M.; Zeng, J.; Li,W.; Moran, C. H.; Zhang, Q.; Qin, D.; Xia, Y. Chem. Rev. 2011, 111, 3669. doi: 10.1021/cr100275d

    31. [31]

      (31) Kan, C.;Wang, C.; Zhu, J.; Li, H. J. Solid State Chem. 2010, 183, 858. doi: 10.1016/j.jssc.2010.01.021

    32. [32]

      (32) u, L.; Chipara, M.; Zaleski, J. M. Chem. Mater. 2007, 19, 1755. doi: 10.1021/cm070160a

    33. [33]

      (33) Hu, M.; Gao, J.; Dong, Y.; Yang, S.; Li, R. K. Y. RSC Adv. 2012, 2, 2055. doi: 10.1039/c2ra01162j

    34. [34]

      (34) Chen, D.; Qiao, X.; Qiu, X.; Chen, J.; Jiang, R. J. Mater. Sci- Mater. El. 2011, 22, 6. doi: 10.1007/s10854-010-0074-2

    35. [35]

      (35) Zhang,W. C.;Wu, X. L.; Chen, H. T.; Gao, Y. J.; Zhu, J.; Huang, G. S.; Chu, P. K. Acta Mater. 2008, 56, 2508. doi: 10.1016/j.actamat.2008.01.043

    36. [36]

      (36) Mao, H.; Feng, J.; Ma, X.;Wu, C.; Zhao, X. J. Nanopart. Res. 2012, 14, 1.

    37. [37]

      (37) Wang, Z. L. J. Phys. Chem. B 2000, 104, 1153. doi: 10.1021/jp993593c

    38. [38]

      (38) Sun, Y.; Mayers, B.; Herricks, T.; Xia, Y. Nano Lett. 2003, 3, 955. doi: 10.1021/nl034312m

    39. [39]

      (39) Jiang, P.; Li, S.; Xie, S.; Gao, Y.; Song, L. Chem. -Eur. J. 2004, 10, 4817.

    40. [40]

      (40) Sosa, I. O.; Noguez, C.; Barrera, R. G. J. Phys. Chem. B 2003, 107, 6269. doi: 10.1021/jp0274076

    41. [41]

      (41) Kan, C.; Zhu, J.; Zhu, X. J. Phys. D: Appl. Phys. 2008, 41, 155304. doi: 10.1088/0022-3727/41/15/155304

    42. [42]

      (42) Li, C. R.; Lu, N. P.; Xu, Q.; Mei, J.; Dong,W. J.; Fu, J. L.; Cao, Z. X. J. Cryst. Growth 2011, 319, 88. doi: 10.1016/j.jcrysgro.2011.01.068

    43. [43]

      (43) Xia, Y.; Xiong, Y.; Lim, B.; Skrabalak, S. E. Angew. Chem. Int. Edit. 2009, 48, 60. doi: 10.1002/anie.200802248

    44. [44]

      (44) Gao, Y.; Jiang, P.; Song, L.;Wang, J. X.; Liu, L. F.; Xiang, Y. J.; Zhang, Z. X.; Zhao, X.W.; Dou, X. Y.; Luo, S. D.; Zhou,W. Y.; Xie, S. S. J. Cryst. Growth 2006, 289, 376. doi: 10.1016/j.jcrysgro.2005.11.123

    45. [45]

      (45) Mo, B.; Kan, C. X.; Ke, S. L.; Cong, B.; Xu, L. H. Acta Phys. -Chim. Sin. 2012, 28, 2511. [莫博, 阚彩侠, 柯善林, 从博, 徐丽红. 物理化学学报, 2012, 28, 2511.] doi: 10.3866/PKU.WHXB201208132


  • 加载中
    1. [1]

      Yingtong FANYujin YAOShouhao WANYihang SHENXiang GAOCuie ZHAO . Construction of copper tetrakis(4-carboxyphenyl)porphyrin/silver nanowire composite electrode for flexible and transparent supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1309-1317. doi: 10.11862/CJIC.20250043

    2. [2]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    3. [3]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    4. [4]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    5. [5]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

    6. [6]

      Jianqiao ZHANGYang LIUYan HEYaling ZHOUFan YANGShihui CHENGBin XIAZhong WANGShijian CHEN . Ni-doped WP2 nanowire self-standingelectrode: Preparation and alkaline electrocatalytic hydrogen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1610-1616. doi: 10.11862/CJIC.20240444

    7. [7]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    8. [8]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    9. [9]

      Yajie LiBin ChenYiping WangHui XingWei ZhaoGeng ZhangSiqi Shi . Inhibiting Dendrite Growth by Customizing Electrolyte or Separator to Achieve Anisotropic Lithium-Ion Transport: A Phase-Field Study. Acta Physico-Chimica Sinica, 2024, 40(3): 2305053-0. doi: 10.3866/PKU.WHXB202305053

    10. [10]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    11. [11]

      Huanhuan XIEYingnan SONGLei LI . Two-dimensional single-layer BiOI nanosheets: Lattice thermal conductivity and phonon transport mechanism. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 702-708. doi: 10.11862/CJIC.20240281

    12. [12]

      Jingzhuo TianChaohong GuanHaobin HuEnzhou LiuDongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-0. doi: 10.1016/j.actphy.2025.100068

    13. [13]

      Haiyuan Wang Yiming Tang Haoran Guo Guohui Chen Yajing Sun Chao Zhao Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067

    14. [14]

      Feng Lu Tao Wang Qi Wang . Preparation and Characterization of Water-Soluble Silver Nanoclusters: A New Design and Teaching Practice in Materials Chemistry Experiment. University Chemistry, 2025, 40(4): 375-381. doi: 10.12461/PKU.DXHX202406005

    15. [15]

      Jiaxuan ZuoKun ZhangJing WangXifei Li . Nucleation Regulation and Mechanism of Precursors for Nickel Cobalt Manganese-based Cathode Materials in Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100009-0. doi: 10.3866/PKU.WHXB202404042

    16. [16]

      Qin LiHuihui ZhangHuajun GuYuanyuan CuiRuihua GaoWei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 2402016-0. doi: 10.3866/PKU.WHXB202402016

    17. [17]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    18. [18]

      Li Zhou Dongyan Tang Yunchen Du . Focusing on the Cultivation of Outstanding Talents: A “Five in One” Approach to Promoting the Construction of Chemical Experimental and Practical Teaching System. University Chemistry, 2024, 39(7): 121-128. doi: 10.12461/PKU.DXHX202405037

    19. [19]

      Haoyu SunDun LiYuanyuan MinYingying WangYanyun MaYiqun ZhengHongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007

    20. [20]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

Metrics
  • PDF Downloads(1017)
  • Abstract views(1541)
  • HTML views(110)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return