Citation:
XU Li, PAN Guo-Shun, LIANG Xiao-Lu, LUO Gui-Hai, ZOU Chun-Li, LUO Hai-Mei. Electrocatalytic Activity of Fe-N/C-TsOH Catalyst for the Oxygen Reduction Reaction in Alkaline Media[J]. Acta Physico-Chimica Sinica,
;2014, 30(2): 318-324.
doi:
10.3866/PKU.WHXB201312121
-
Pyrolyzed carbon supported ferrum polypyrrole (Fe-N/C) catalysts were synthesized with and without the dopant p-toluenesulfonic acid (TsOH) through a solvent-grinding method followed by heattreatment at the desire temperature. Both the catalysts were characterized using electrochemical techniques, such as cyclic voltammetry (CV), as well as the rotating disk electrode (RDE) technique. It was found that the catalysts doped with TsOH showed significantly better oxygen reduction reaction (ORR) activity than the undoped catalysts. The average electron transfer numbers for the catalyzed ORR were 3.899 and 3.098 for the TsOH-doped and undoped catalysts, respectively. Thermal treatment was found to be a necessary step for catalyst activity improvement. The catalyst pyrolyzed at 600 ℃ showed the best ORR activity: the onset potential and the potential at the current density of -1.5 mA·cm-2 for the TsOHdoped catalyst were 30 and 170 mV more positive than those for the un-pyrolyzed TsOH-doped catalyst, respectively. To clarify the effects of TsOH doping and pyrolyzation, scanning electron microscopy (SEM), X- ray diffraction (XRD), and X- ray photoelectron spectroscopy (XPS) were used to analyze the morphology, structure, and composition of the catalysts. The XPS results suggest that the pyrrolic-N groups are the most active sites and sulfur species are structurally bound to carbon in the form of C―Sn―C and oxidized ―SOn― bonds, which is an additional beneficial factor for the ORR.
-
-
-
[1]
(1) Qiao, J. L.; Xu, L.; Ding, L.; Shi, P. H.; Zhang, L.; Baker, R.;Zhang, J. J. Int. J. Electrochem. Sci. 2013, 8, 1189.
-
[2]
(2) Kromera, M. A.; Joseck, F.; Rhodes, T.; Guernsey, M.;Marcinkoski, J. Int. J. Hydrog. Energy 2009, 34, 8276. doi: 10.1016/j.ijhydene.2009.06.052
-
[3]
(3) Bashyam, R.; Zelenary, P. Nature 2006, 443, 63. doi: 10.1038/nature05118
-
[4]
(4) Lee, K.; Zhang, L.; Lui, H.; Hui, R.; Shi, Z.; Zhang, J.Electrochim. Acta 2009, 54, 4704. doi: 10.1016/j.electacta.2009.03.081
-
[5]
(5) Baker, R.;Wilkinson, D. P.;Wilkinson, J. Electrochim. Acta2008, 53, 6906. doi: 10.1016/j.electacta.2008.01.055
-
[6]
(6) Xu, Z.; Li, H.; Cao, G.; Zhang, Q.; Li, K.; Zhao, Z. J. Mol. Catal. A: Chem. 2011, 335, 89. doi: 10.1016/j.molcata.2010.11.018
-
[7]
(7) Ding, L.; Qiao, J. L.; Feng, X.; Zhang, J.; Tian, B. Int. J. Hydrog. Energy 2012, 37, 14103. doi: 10.1016/j.ijhydene.2012.07.046
-
[8]
(8) Li, X.; Liu, G.; Popov, B. N. J. Power Sources 2010, 195,6373. doi: 10.1016/j.jpowsour.2010.04.019
-
[9]
(9) Qiao, J.; Xu, L.; Xu, P.; Shi, J.;Wang, H. Electrochim. Acta2013, 96, 298. doi: 10.1016/j.electacta.2013.02.030
-
[10]
(10) Jaouen, F.; ellne, V.; Lefèvre, M.; Herranz, J. Proietti, E.;Dodelet, J. P. Electrochim. Acta 2013, 87, 619. doi: 10.1016/j.electacta.2012.09.057
-
[11]
(11) Charreteur, F.; Ruggeri, S.; Jaouen, F.; Dodelet, J. P. Electrochim. Acta 2008, 53, 6881. doi: 10.1016/j.electacta.2007.12.051
-
[12]
(12) Yuasa, M.; Yamaguchi, A.; Itsuki, H.; Tanaka, K.; Yamamoto,M.; Oyaizu, K. Chem. Mater. 2005, 17, 4278. doi: 10.1021/cm050958z
-
[13]
(13) Hinds, G. Preparation and Characterisation of PEM Fuel CellElectrocatalysts: a Review. In NPL Report DEPC-MPE 019;National Physical Laboratory: Teddington, Middlesex, UnitedKingdom, 2005; p 10.
-
[14]
(14) Qiao, J.; Xu, L.; Ding, L.; Zhang, L.; Baker, L.; Dai, X.; Zhang,J. Appl. Catal. B: Environ. 2012, 125, 197. doi: 10.1016/j.apcatb.2012.05.050
-
[15]
(15) Yang, Y.; Jiang, S.; Zhao, Y.; Zhu, L.; Chen, S.;Wang, X.;Wu,Q.; Ma, J.; Ma, Y.; Hu, Z. Angew. Chem. Int. Edit. 2011, 50,7132. doi: 10.1002/anie.v50.31
-
[16]
(16) Kramm, U. I.; Herrmann, I.; Fiechter, S.; Zehl, G.; Zizak, I.;Abs-Wurmbach, I.; Radnik, J.; Dorbandt, I.; Bogdanoff, P. ECS Trans. 2009, 25, 659.
-
[17]
(17) Cheng, H.; Yan,W.; Scott, K. Fuel Cells 2007, 7, 16.
-
[18]
(18) Paulus, A. U.; Schmidt, H. A.; Gasteiger, R. J.; Behm, R. J.Electroanal. Chem. 2001, 495, 134. doi: 10.1016/S0022-0728(00)00407-1
-
[19]
(19) Bezerra, C.W. B.; Zhang, L.; Lee, K.; Liu, H.; Zhang, J.; Shi,Z.; Marques, A. L. B.; Marques, E. P.;Wu, S.; Zhang, J.Electrochim. Acta 2008, 53, 7703. doi: 10.1016/j.electacta.2008.05.030
-
[20]
(20) Jaouen, F.; Dodelet. J. P. Electrochim. Acta 2007, 52, 5975. doi: 10.1016/j.electacta.2007.03.045
-
[21]
(21) Subramanian, N. P.; Li, X.; Nallathambi, V.; Kumaraguru, S. P.;Colon-Mercado, H.;Wu, G.; Lee, J.W.; Popov, B. N. J. Power Sources 2009, 188, 38. doi: 10.1016/j.jpowsour.2008.11.087
-
[22]
(22) Wang, H.; Maiyalagan, T.;Wang, X. ACS Catal. 2012, 2, 781.doi: 10.1021/cs200652y
-
[23]
(23) Wu, G.; Chen, Z.; Artyushkova, K.; Garzon, F. H.; Zelenay, P.ECS Trans. 2008, 16, 159.
-
[24]
(24) Kundu, S.; Nagaiah, T. C.; Xia,W.;Wang, Y.; Dommele, S. V.;Bitter, J. H.; Santa, M.; Grundmeier, G.; Bron, M.; Schuhmann,W.; Muhler, M. J. Phys. Chem. C 2009, 113, 14302. doi: 10.1021/jp811320d
-
[25]
(25) Wu, G.; Artyushkova, K.; Ferrandon, M.; Kropf, J.; Myers, D.;Zelenay, P. ECS Trans. 2009, 25, 1299.
-
[26]
(26) Bubnova, O.; Khan, Z. U.; Malti, A.; Braun, S.; Fahlman, M.;Berggren, M.; Crispin, X. Nat. Mater. 2011, 10, 429. doi: 10.1038/nmat3012
-
[27]
(27) Paraknowitsch, J. P.;Wienert, B.; Zhang, Y.; Thomas, A. Chem. Eur. J. 2012, 18, 15416. doi: 10.1002/chem.v18.48
-
[28]
(28) Wang, H.; Bo, X.; Zhang, Y.; Guo, L. Electrochim. Acta 2013,108, 404. doi: 10.1016/j.electacta.2013.06.133
-
[29]
(29) Herrmann, I.; Kramm, U. I.; Radnik, J.; Fiechter, S.; Bogdanoff,P. J. Electrochem. Soc. 2009, 156, 1283. doi: 10.1149/1.3185852
-
[30]
(30) Grabke, H. J.; Moszynski, D.; Muller-Lorenz, E. M.; Schneider,A. Surf. Interface Anal. 2002, 34, 369.
-
[1]
-
-
-
[1]
Bizhu Shao , Huijun Dong , Yunnan Gong , Jianhua Mei , Fengshi Cai , Jinbiao Liu , Dichang Zhong , Tongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026
-
[2]
Xichen YAO , Shuxian WANG , Yun WANG , Cheng WANG , Chuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384
-
[3]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[4]
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005
-
[5]
Yixuan Wang , Canhui Zhang , Xingkun Wang , Jiarui Duan , Kecheng Tong , Shuixing Dai , Lei Chu , Minghua Huang . Engineering Carbon-Chainmail-Shell Coated Co9Se8 Nanoparticles as Efficient and Durable Catalysts in Seawater-Based Zn-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2305004-0. doi: 10.3866/PKU.WHXB202305004
-
[6]
Hao XU , Ruopeng LI , Peixia YANG , Anmin LIU , Jie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302
-
[7]
Fengqiao Bi , Jun Wang , Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069
-
[8]
Kun Xu , Xinxin Song , Zhilei Yin , Jian Yang , Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050
-
[9]
Hengyi ZHU , Liyun JU , Haoyue ZHANG , Jiaxin DU , Yutong XIE , Li SONG , Yachao JIN , Mingdao ZHANG . Efficient regeneration of waste LiNi0.5Co0.2Mn0.3O2 cathode toward high-performance Li-ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 625-638. doi: 10.11862/CJIC.20240358
-
[10]
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002
-
[11]
Dong Xiang , Kunzhen Li , Kanghua Miao , Ran Long , Yujie Xiong , Xiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027
-
[12]
Wang Wang , Yucheng Liu , Shengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059
-
[13]
Xiaoxia WANG , Ya'nan GUO , Feng SU , Chun HAN , Long SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478
-
[14]
Yuchen Zhou , Huanmin Liu , Hongxing Li , Xinyu Song , Yonghua Tang , Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067
-
[15]
Lu Zhuoran , Li Shengkai , Lu Yuxuan , Wang Shuangyin , Zou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003
-
[16]
Mengyang LI , Hao XU , Zhonghao NIU , Chunhua GONG , Weihui ZHONG , Jingli XIE . Highly effective catalytic synthesis of β-amino alcohols by using viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1294-1300. doi: 10.11862/CJIC.20250080
-
[17]
Weicheng Feng , Jingcheng Yu , Yilan Yang , Yige Guo , Geng Zou , Xiaoju Liu , Zhou Chen , Kun Dong , Yuefeng Song , Guoxiong Wang , Xinhe Bao . Regulating the High Entropy Component of Double Perovskite for High-Temperature Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(6): 2306013-0. doi: 10.3866/PKU.WHXB202306013
-
[18]
Zelong LIANG , Shijia QIN , Pengfei GUO , Hang XU , Bin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409
-
[19]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[20]
Dan Li , Hui Xin , Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046
-
[1]
Metrics
- PDF Downloads(610)
- Abstract views(915)
- HTML views(21)