Citation:
CHEN Yi-Jian, LIU Teng, ZHAI Xue-Ru, XU Gui-Ying. Comparative Study on the Aggregation Behaviors of X-Shaped and Linear Block Polyethers at the Air/Water and n-Heptane/Water Interfaces[J]. Acta Physico-Chimica Sinica,
;2014, 30(1): 102-110.
doi:
10.3866/PKU.WHXB201311071
-
Linear block polyethers, i.e., poly(ethylene oxide) (PEO)-poly(propylene oxide) (PPO)-PEO (LPE), and X-shaped block polyethers, i.e., PEO-PPO-PEO (TPE), with same EO/PO ratios and molecular masses were synthesized by anionic polymerization. The aggregation behaviors at air/water and n-heptane/water interfaces were systematically studied. The results show that LPE is more efficient at decreasing the surface tension of water and n-heptane than TPE is. The dynamic interfacial tension curves indicate that the lag-time of the adsorption of the block polyethers at the n-heptane/water interface is smaller than that at the air/water surface, implying that immersion of the PO groups in the oil phase is more energetically favorable than immersion in the air phase. The oil molecules can insert into the adsorption layer, and hydrophobic interactions between oil molecules and PO moieties lead to a relatively ordered arrangement of adsorbed polyether molecules. At the n-heptane/water interface, diffusion of the block polyethers is faster than that at the air/water surface. The dilatational elasticity at the n-heptane/water interface is much higher than that at the air/water surface.
-
-
-
[1]
(1) Alexandridis, P.; Hatton, T. A. Colloids Surf. A 1995, 96, 1. doi: 10.1016/0927-7757(94)03028-X
-
[2]
(2) Zana, R.; Marques, C.; Johner, A. Adv. Colloid Interface Sci. 2006, 123, 345.
-
[3]
(3) Noskov, B. A.; Lin, S. Y.; Loglio, G.; Rubio, R. G.; Miller, R. Langmuir 2006, 22, 2647. doi: 10.1021/la052662d
-
[4]
(4) Díez-Pascual, A. M.; Monroy, F.; Ortega, F.; Rubio, R. G.; Miller, R.; Noskov, B. A. Langmuir 2007, 23, 3802. doi: 10.1021/la062936c
-
[5]
(5) ng, H.; Xu, G.; Ding, H.; Shi, X.; Tan, Y. Eur. Polym. J. 2009, 45, 2540. doi: 10.1016/j.eurpolymj.2009.05.027
-
[6]
(6) Shou, Q. H.; Guo, C.; Yang, L.; Jia, L. W.; Liu, C. Z.; Liu, H. Z. J. Colloid Interface Sci. 2011, 363, 481. doi: 10.1016/j.jcis.2011.07.021
-
[7]
(7) Kadam, Y.; Singh, K.; Maran ni, D. G.; Ma, J. H.; Aswal, V. K.; Bahadur, P. J. Colloid Interface Sci. 2010, 351, 449. doi: 10.1016/j.jcis.2010.07.046
-
[8]
(8) Mansur, C. R.; Barboza, S. P.; nzález, G.; Lucas, E. F. J. Colloid Interface Sci. 2004, 271, 232. doi: 10.1016/j.jcis.2003.11.034
-
[9]
(9) Washington, C.; King, S. M.; Heenan, R. K. J. Phys. Chem. 1996, 100, 7603. doi: 10.1021/jp953007p
-
[10]
(10) Zhang, Z. Q.; Xu, G. Y.; Wang, F.; Dong, S. L.; Chen, Y. J. J. Colloid Interface Sci. 2005, 282, 1. doi: 10.1016/j.jcis.2004.08.144
-
[11]
(11) Zhang, Z. Q.; Xu, G. Y.; Wang, F.; Dong, S. L.; Li, Y. M. J. Colloid Interface Sci. 2004, 277, 464. doi: 10.1016/j.jcis.2004.04.035
-
[12]
(12) Wang, F.; Xu, G. Y.; Zhang, Z. Q.; Xin, X. Eur. J. Inorg. Chem. 2006, 1, 109.
-
[13]
(13) Xin, X.; Xu, G. Y.; Zhao, T. T.; Zhu, Y. Y.; Shi, X. F.; ng, H. J.; Zhang, Z. Q. J. Phys. Chem. C 2008, 112, 16377. doi: 10.1021/jp8059344
-
[14]
(14) ng, H. J.; Xu, G. Y.; Liu, T.; Pang, J. Y.; Dou, W. L.; Xin, X. Colloid. Polym. Sci. 2011, 289, 933. doi: 10.1007/s00396-011-2419-7
-
[15]
(15) Liu, T.; Xu, G. Y.; Zhang, J.; Zhang, H. H.; Pang, J. Y. Colloid. Polym. Sci. 2013, 291, 691. doi: 10.1007/s00396-012-2776-x
-
[16]
(16) Cao, X. R.; Xu, G. Y.; Yuan, S. L.; Gao, B. Y. Soft Matter 2011, 7, 9035. doi: 10.1039/c1sm05319a
-
[17]
(17) Chiappetta, D. A.; Alvarez-Lorenzo, C.; Rey-Rico, A.; Taboada, P.; Concheiro, A.; Sosnik, A. Eur. J. Pharm. Biopharm. 2010, 76, 24. doi: 10.1016/j.ejpb.2010.05.007
-
[18]
(18) Dong, J. F.; Chowdhry, B. Z.; Leharne, S. A. Colloids Surf. A 2003, 212, 9. doi: 10.1016/S0927-7757(02)00295-9
-
[19]
(19) nzalez-Lopez, J.; Alvarez-Lorenzo, C.; Taboada, P.; Sosnik, A.; Sandez-Macho, I.; Concheiro, A. Langmuir 2008, 24, 10688. doi: 10.1021/la8016563
-
[20]
(20) Zhai, X. R.; Xu, G. Y.; Chen, Y. J.; Liu, T.; Zhang, J.; Yuan, J.; Tan, Y. B.; Zhang, J. DOI: 10.1007/s00396-013-3013-y, in press.
-
[21]
(21) Alexandridis, P.; Athanassiou, V.; Hatton, T. A. Langmuir 1995, 11, 2442. doi: 10.1021/la00007a022
-
[22]
(22) ng, H. J.; Xu, G. Y.; Liu, T.; Xu, L.; Zhai, X. R.; Zhang, J.; Lv, X. Langmuir 2012, 28, 13590. doi: 10.1021/la303430c
-
[23]
(23) Mulqueen, M.; Blankschtein, D. Langmuir 2001, 18, 365.
-
[24]
(24) Kim, Y. H.; Wasan, D. T.; Breen, P. J. Colloids Surf., A 1995, 95, 235. doi: 10.1016/0927-7757(94)03032-U
-
[25]
(25) Aveyard, R.; Binks, B. P.; Fletcher, P. D. I.; Lu, J. R. J. Colloid Interface Sci. 1990, 139, 128. doi: 10.1016/0021-9797(90)90450-3
-
[26]
(26) Vieira, J. B.; Li, Z. X.; Thomas, R. K. J. Phys. Chem. B 2002, 106, 5400. doi: 10.1021/jp013286i
-
[27]
(27) Alexandridis, P.; Athanassiou, V.; Fukuda, S.; Hatton, T. A. Langmuir 1994, 10, 2604. doi: 10.1021/la00020a019
-
[28]
(28) Liu, T.; Xu, G. Y.; ng, H.; Pang, J.; He, F. Langmuir 2011, 27, 9253. doi: 10.1021/la201676u
-
[29]
(29) Wanka, G.; Hoffmann, H.; Ulbricht, W. Colloid. Polym. Sci. 1990, 268, 101. doi: 10.1007/BF01513189
-
[30]
(30) Miller, R.; Fainerman, V. B.; Aksenenko, E. V.; Leser, M. E.; Michel, M. Langmuir 2004, 20, 771. doi: 10.1021/la030332s
-
[31]
(31) Zhang, H. X.; Xu, G. Y.; Wu, D.; Wang, S. W. Colloids Surf. A 2008, 317, 289. doi: 10.1016/j.colsurfa.2007.10.033
-
[32]
(32) Phang, T. L.; Liao, Y. C.; Franses, E. I. Langmuir 2004, 20, 4004. doi: 10.1021/la035424w
-
[33]
(33) Hua X. Y.; Rosen, M. J. J. Colloid Interface Sci. 1988, 124, 652. doi: 10.1016/0021-9797(88)90203-2
-
[34]
(34) Rosen, M. J.; Song, L. D. J. Colloid Interface Sci. 1996, 179, 261. doi: 10.1006/jcis.1996.0212
-
[35]
(35) Nahringbauer, I. J. Colloid Interface Sci. 1995, 176, 318. doi: 10.1006/jcis.1995.9961
-
[36]
(36) Fainerman, V. B.; Lylyk, S. V.; Aksenenko, E. V.; Liggieri, L.; Makievski, A. V.; Petkov, J. T.; Yorke, J.; Miller, R. Colloids Surf. A 2009, 334, 8.
-
[37]
(37) Knock, M. M.; Bell, G. R.; Hill, E. K.; Turner, H. J.; Bain, C. D. J. Phys. Chem. B 2003, 107, 10801. doi: 10.1021/jp027047m
-
[38]
(38) Chanda, J.; Bandyopadhyay, S. J. Phys. Chem. B 2006, 110, 23482. doi: 10.1021/jp063205o
-
[39]
(39) Zhang, L.; Wang, X. C.; ng, Q. T.; Luo, L.; Zhao, S.; Yu, J. Y. J. Colloid Interface Sci. 2008, 327, 451. doi: 10.1016/j.jcis.2008.08.019
-
[40]
(40) Wang, Z. L.; Li, Z. Q.; Zhang, L.; Huang, H. Y.; Zhang, L.; Zhao, S.; Yu, J. Y. J. Chem. Eng. Data 2011, 56, 2393. doi: 10.1021/je1013312
-
[41]
(41) Zong, H.; Wang, L.; Fang, H. B.; Mao, L. T.; Wang, Y. H.; Zhang, L.; Zhao, S.; Yu, J. Y. Acta Phys. -Chim. Sin., 2010, 26, 2982. [宗华, 王磊, 方洪波, 毛雷霆, 王宇慧, 张路, 赵濉, 俞稼镛. 物理化学学报, 2010, 26, 2982.] doi: 10.3866/PKU.WHXB20101105
-
[42]
(42) Zhang, L.; Wang, X. C.; ng, Q. T.; Luo, L.; Zhang, L.; Zhao, S.;Yu, J. Y. Acta Phys.-Chim. Sin., 2007, 23, 1652. [张磊, 王晓春, 宫清涛, 罗澜, 张路, 赵濉, 俞稼镛. 物理化学学报, 2007, 23, 1652.] doi: 10.3866/PKU.WHXB20071031
-
[43]
(43) Li, X. L.; Zhang, L.; ng, Q. T.; Zhang, L.; Zhao, S.; Yu, J. Y. Acta Phys.-Chim. Sin., 2010, 26, 631. [李秀兰, 张磊, 宫清涛, 张路, 赵濉, 俞稼镛. 物理化学学报, 2010, 26, 631.] doi: 10.3866/PKU.WHXB20100319
-
[44]
(44) Noskov, B. A. Curr. Opin. Colloid Interface Sci. 2010, 15, 229. doi: 10.1016/j.cocis.2010.01.006
-
[45]
(45) Liggieri, L.; Miller, R. Curr. Opin. Colloid Interface Sci. 2010, 15, 256. doi: 10.1016/j.cocis.2010.02.003
-
[46]
(46) Huang, Y. P.; Zhang, L.; Zhang, L.; Luo, L.; Zhao, S.; Yu, J. Y. J. Phys. Chem. B 2007, 111, 5640. doi: 10.1021/jp070997t
-
[1]
-
-
-
[1]
Congying Lu , Fei Zhong , Zhenyu Yuan , Shuaibing Li , Jiayao Li , Jiewen Liu , Xianyang Hu , Liqun Sun , Rui Li , Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097
-
[2]
Jianan Hong , Chenyu Xu , Yan Liu , Changqi Li , Menglin Wang , Yanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099
-
[3]
Chongjing Liu , Yujian Xia , Pengjun Zhang , Shiqiang Wei , Dengfeng Cao , Beibei Sheng , Yongheng Chu , Shuangming Chen , Li Song , Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 2309036-0. doi: 10.3866/PKU.WHXB202309036
-
[4]
Tao Xu , Wei Sun , Tianci Kong , Jie Zhou , Yitai Qian . Stable Graphite Interface for Potassium Ion Battery Achieving Ultralong Cycling Performance. Acta Physico-Chimica Sinica, 2024, 40(2): 2303021-0. doi: 10.3866/PKU.WHXB202303021
-
[5]
Zhi Dou , Huiyu Duan , Yixi Lin , Yinghui Xia , Mingbo Zheng , Zhenming Xu . High-Throughput Screening Lithium Alloy Phases and Investigation of Ion Transport for Solid Electrolyte Interphase Layer. Acta Physico-Chimica Sinica, 2024, 40(3): 2305039-0. doi: 10.3866/PKU.WHXB202305039
-
[6]
Fanpeng Meng , Fei Zhao , Jingkai Lin , Jinsheng Zhao , Huayang Zhang , Shaobin Wang . Optimizing interfacial electric fields in carbon nitride nanosheet/spherical conjugated polymer S-scheme heterojunction for hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-0. doi: 10.1016/j.actphy.2025.100095
-
[7]
Xinlong WANG , Zhenguo CHENG , Guo WANG , Xiaokuen ZHANG , Yong XIANG , Xinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259
-
[8]
Chunai Dai , Yongsheng Han , Luting Yan , Zhen Li , Yingze Cao . Ideological and Political Design of Solid-liquid Contact Angle Measurement Experiment. University Chemistry, 2024, 39(2): 28-33. doi: 10.3866/PKU.DXHX202306065
-
[9]
Jiayu Tang , Jichuan Pang , Shaohua Xiao , Xinhua Xu , Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021
-
[10]
Meifeng Zhu , Jin Cheng , Kai Huang , Cheng Lian , Shouhong Xu , Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166
-
[11]
Caiyun Jin , Zexuan Wu , Guopeng Li , Zhan Luo , Nian-Wu Li . Phosphazene-based flame-retardant artificial interphase layer for lithium metal batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100094-0. doi: 10.1016/j.actphy.2025.100094
-
[12]
Xueting Cao , Shuangshuang Cha , Ming Gong . Interfacial Electrical Double Layer in Electrocatalytic Reactions: Fundamentals, Characterizations and Applications. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-0. doi: 10.1016/j.actphy.2024.100041
-
[13]
Jiandong Liu , Zhijia Zhang , Kamenskii Mikhail , Volkov Filipp , Eliseeva Svetlana , Jianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 2308048-0. doi: 10.3866/PKU.WHXB202308048
-
[14]
Shasha SUN , Weichun HUANG , Mengke WANG . Research progress of interface regulation strategies and applications of two‑dimensional MXenes. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1465-1482. doi: 10.11862/CJIC.20240430
-
[15]
Peng Li , Yuanying Cui , Zhongliao Wang , Graham Dawson , Chunfeng Shao , Kai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-0. doi: 10.1016/j.actphy.2025.100065
-
[16]
Weikang Wang , Yadong Wu , Jianjun Zhang , Kai Meng , Jinhe Li , Lele Wang , Qinqin Liu . Green H2O2 synthesis via melamine-foam supported S-scheme Cd0.5Zn0.5In2S4/S-doped carbon nitride heterojunction: synergistic interfacial charge transfer and local photothermal effect. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-0. doi: 10.1016/j.actphy.2025.100093
-
[17]
Yikai Wang , Xiaolin Jiang , Haoming Song , Nan Wei , Yifan Wang , Xinjun Xu , Cuihong Li , Hao Lu , Yahui Liu , Zhishan Bo . Thickness-Insensitive, Cyano-Modified Perylene Diimide Derivative as a Cathode Interlayer Material for High-Efficiency Organic Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-0. doi: 10.3866/PKU.WHXB202406007
-
[18]
Jiaxing Cai , Wendi Xu , Haoqiang Chi , Qian Liu , Wa Gao , Li Shi , Jingxiang Low , Zhigang Zou , Yong Zhou . Highly Efficient InOOH/ZnIn2S4 Hollow Sphere S-Scheme Heterojunction with 0D/2D Interface for Enhancing Photocatalytic CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-0. doi: 10.3866/PKU.WHXB202407002
-
[19]
Xuan Zhou , Yi Fan , Zhuoqi Jiang , Zhipeng Li , Guowen Yuan , Laiying Zhang , Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111
-
[20]
Xiaotian ZHU , Fangding HUANG , Wenchang ZHU , Jianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260
-
[1]
Metrics
- PDF Downloads(503)
- Abstract views(905)
- HTML views(12)