Citation: CAO Zhan-Min, XIE Wei, WANG Kun-Peng, NIU Chun-Ju, DU Guang-Wei, QIAO Zhi-Yu. Thermodynamic Optimization of the Al-Fe-P Ternary System[J]. Acta Physico-Chimica Sinica, ;2013, 29(10): 2148-2156. doi: 10.3866/PKU.WHXB201307291 shu

Thermodynamic Optimization of the Al-Fe-P Ternary System

  • Received Date: 1 April 2013
    Available Online: 29 July 2013

    Fund Project: 国家自然科学基金(50934011, 51274034) (50934011, 51274034)中央高校基础研究基金(FRF-SD-12-010A)资助项目 (FRF-SD-12-010A)

  • A critical thermodynamic optimization of the Al-Fe-P ternary system was performed using the CALPHAD method. Among the sub-binary systems in the Al-Fe-P system, the Al-P systemwas reassessed according to its related experimental information. The thermodynamic descriptions of the Al-Fe and Fe-Pbinary systems were taken from previous studies with minor modifications. The parameters of the thermodynamic model of the Al-Fe-P ternary systemwere optimized based on available experimental phase diagramdata and thermodynamic properties. One set of consistent parameters of the Gibbs energies of all phases, which can satisfactorily reproduce most of the experimental phase diagramdata, was obtained. By employing the driving force criterion with the present thermodynamic description, the experimentally reported composition dependence of the glass-forming ability of the Al-Fe-P systemcould be explained thermodynamically.

  • 加载中
    1. [1]

      (1) Fukamichi, K.; Kikuchi, M.; Hiroyoshi, H.; Masumoto, T. Anomalous Thermal Expansion, ΔE Effect, Invar and Elinvar Characteristics of Some Fe-based Amorphous Alloys. In Rapidly Quenched Metals Ⅲ; Cantor, B. Eds.; The Metals Society: London, 1978.

    2. [2]

      (2) Masumoto, T.; Hashimoto, K.; Naka, M. Corrosion Behavior of Amorphous Metals. In Rapidly quenched metals Ⅲ; Cantor, B. Eds.; The Metals Society: London, 1978.

    3. [3]

      (3) Yokoyama, A.; Komiyama, H.; Inoue, H.; Masumoto, T.; Kimura, H. M. Scripta Met. 1981, 15, 365.

    4. [4]

      (4) Inoue, A.; Kitamura, A.; Masumoto, T. Mater. Sci. 1983, 18, 753. doi: 10.1007/BF00745573

    5. [5]

      (5) Kim, D.; Lee, B. J.; Kim, N. J. Intermetallics 2004, 12, 1103. doi: 10.1016/j.intermet.2004.04.001

    6. [6]

      (6) Kim, D.; Lee, B. J.; Kim, N. J. Scripta Mater. 2005, 52, 969. doi: 10.1016/j.scriptamat.2005.01.038

    7. [7]

      (7) Bo, H.; Wang, J.; Jin, S.; Qi, H. Y.; Yuan, X. L.; Liu, L. B.; Jin, Z. P. Intermetallics 2010, 18, 2322. doi: 10.1016/j.intermet.2010.08.002

    8. [8]

      (8) Wu, C. J.; Huang, W. M.; Su, X. P.; Peng, H. P.; Wang, J. H.; Liu, Y. CALPHAD 2012, 38, 1. doi: 10.1016/j.calphad.2012.03.005

    9. [9]

      (9) Sundman, B.; Jansson, B.; Andersson, J. O. CALPHAD 1985, 9, 153. doi: 10.1016/0364-5916(85) 90021-5

    10. [10]

      (10) White, W. E.; Bushey, A. H.; Amer, J. Chem. Soc. 1944, 66, 1666. doi: 10.1021/ja01238a018

    11. [11]

      (11) Panish, M. B.; Ilegems, M. Prog. Solid State Chem. 1972, 7, 39. doi: 10.1016/0079-6786(72) 90004-0

    12. [12]

      (12) Ilegems, M.; Panish, M. B. Crys. Growth. 1973, 20, 77. doi: 10.1016/0022-0248(73) 90117-6

    13. [13]

      (13) Tu, H.;Yin, F. C.; Su, X. P.;Liu, Y.; Wang, X. M. CALPHAD 2009, 33, 755. doi: 10.1016/j.calphad.2009.10.003

    14. [14]

      (14) Kischio, W. Inorg. Nucl. Chem. 1965, 27, 750. doi: 10.1016/0022-1902(65) 80287-1

    15. [15]

      (15) Czochrallski, J. Metallkd Z. 1923, 15, 273.

    16. [16]

      (16) Wang, C. C.; Zaheervuddin M. Inorg. Nucl. Chem. 1963, 25, 326. doi: 10.1016/0022-1902(63) 80071-8

    17. [17]

      (17) de Maria, G.; Gingerich, K. A.; Piacente, V. Chem. Phys. 1968, 49, 4705.

    18. [18]

      (18) McAlister, A. J. Alloy Phase Diagrams 1985, 6 (3), 222. doi: 10.1007/BF02880402

    19. [19]

      (19) Martosudirdjo, S.; Pratt, J. N. Thermochim. Acta 1974, 10, 23. doi: 10.1016/0040-6031(74) 85019-7

    20. [20]

      (20) Kaufman, L.; Nesor, H. CALPHAD 1978, 2, 325. doi: 10.1016/0364-5916(78) 90020-2

    21. [21]

      (21) Saunders, N.; Rivlin, V. G. Metallkd Z. 1987, 78, 795.

    22. [22]

      (22) Seierstein, M. The Al-Fe System. In COST 507, Thermochemical Database for Light Metal Alloys; Ansara, I., Dinsdale, A. T., Rand, M. H. Eds.; Office for Official Publications of the European Communities: Luxembourg, 1998.

    23. [23]

      (23) Zhang, L. J.; Du, Y. CALPHAD 2007, 31, 529. doi: 10.1016/j.calphad.2007.03.003

    24. [24]

      (24) Du, Y.; Schuster, J. C.; Liu, Z. K.; Hu, R. X.; Nash, P.; Sun, W. H.; Zhang, W. W.; Wang, J.; Zhang, L. J.; Tang, C. Y.; Zhu, Z. J.;. Liu, S. H.; Ouyang, Y. F.; Zhang, W. Q.; Krendelsberger, N. Intermetallics 2008, 16 (4), 554. doi: 10.1016/j.intermet.2008.01.003

    25. [25]

      (25) Guo, C. P.; Du, Z. M.; Li, C. R.; Zhang, B. L.; Tao, M. CALPHAD 2008, 32, 637. doi: 10.1016/j.calphad.2008.08.007

    26. [26]

      (26) Okamoto, H. Bull. Alloy Phase Diagrams 1990, 11, 404. doi: 10.1007/BF02843320

    27. [27]

      (27) Ohtani, H.; Hanaya, N.; Hasebe, M.; Teraoka, S.; Abe, M. CALPHAD 2006, 30, 147. doi: 10.1016/j.calphad.2005.09.006

    28. [28]

      (28) Tokunaga, T.; Hanaya, N.; Ohtani, H.; Hasebe, M. ISIJ International 2009, 49(7), 947. doi: 10.2355/isijinternational.49.947

    29. [29]

      (29) Zaitsev, A. I.; Dobrokhotova, Zh. V.; Litvina, A. D.; Mogutnov, B. M. Chem. Soc. Faraday Trans. 1995, 91 (4), 703. doi: 10.1039/ft9959100703

    30. [30]

      (30) Cao, Z. M.; Wang, K. P.; Qiao, Z. Y.; Du, G. W. Acta Phys. -Chim. Sin. 2012, 28 (1), 37. [曹战民, 王昆鹏, 乔芝郁, 杜广巍. 物理化学学报, 2012, 28 (1), 37.] doi: 10.3866/PKU.WHXB201111172

    31. [31]

      (31) Vogel, R.; Klose, H. Arch. Eisenhuttenwesen 1952, 23 (7), 287.

    32. [32]

      (32) Kaneko, H.; Nishizawa, T.; Tamaki, K. Nippon Kinzoku Gakkai-shi 1965, 29 (2), 159.

    33. [33]

      (33) Yamada, K.; Kato, E. Tetsu-to-Hagane (J. Iron Steel Inst. Jap.) 1979, 65 (2), 273.

    34. [34]

      (34) Yamada, K.; Kato, E. Trans. Iron Steel Inst. Jap. 1983, 23 (1), 51. doi: 10.2355/isijinternational1966.23.51

    35. [35]

      (35) Ding, X.; Wang, W.; Han, Q. Acta Metall. Sin. 1993, 29 (12), B527.

    36. [36]

      (36) Raghavan, V. The Al-Fe-P System (Aluminium-Iron-Phosphorus), In Phase Diagrams of Ternary Iron Alloys, part 3, Ternary Systems Containing Iron and Phosphorus; Indian Institute of Metals: Calcutta, 1988.

    37. [37]

      (37) Raghavan, V. Alloy Phase Diagrams 1989, 5 (1), 32.

    38. [38]

      (38) Schmid-Fetzer, R.; Tomashik, V. A. Landolt-B rnstein-Group IV Physical Chemistry 2008, 11D1 (1), 172.

    39. [39]

      (39) Dinsdale, A. T. CALPHAD 1991, 15, 317. doi: 10.1016/0364-5916(91) 90030-N

    40. [40]

      (40) Muggianu, Y. M.; Gambino, M.; Bros, J. P. Chim. Phys. 1975, 72, 83.

    41. [41]

      (41) Ansara, I.; Dupin, N.; Lukas, H. L.; Sundman, B. Alloys Compd. 1997, 247, 20. doi: 10.1016/S0925-8388(96) 02652-7

    42. [42]

      (42) Dupin, N.; Ansara, I.; Sundman, B. CALPHAD 2001, 25, 279. doi: 10.1016/S0364-5916(01) 00049-9


  • 加载中
    1. [1]

      Yujing Chen Hongqun Ouyang Dan Zhao Yanyan Chu Zhengping Qiao . Recommendations for the Content and Instruction of the Physical Chemistry Experiment “Construction of Ternary Liquid-Liquid Phase Diagrams”. University Chemistry, 2025, 40(7): 359-366. doi: 10.12461/PKU.DXHX202409120

    2. [2]

      Mahmoud SayedHan LiChuanbiao Bie . Challenges and prospects of photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(9): 100117-0. doi: 10.1016/j.actphy.2025.100117

    3. [3]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    4. [4]

      Chunguang Rong Miaojun Xu Xingde Xiang Song Liu . 化学热力学熵变计算的教学探讨. University Chemistry, 2025, 40(8): 323-329. doi: 10.12461/PKU.DXHX202409146

    5. [5]

      Jianchun Wang Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082

    6. [6]

      Tongqi Ye Yanqing Wang Qi Wang Huaiping Cong Xianghua Kong Yuewen Ye . Reform of Classical Thermodynamics Curriculum from the Perspective of Computational Chemistry. University Chemistry, 2025, 40(7): 387-392. doi: 10.12461/PKU.DXHX202409128

    7. [7]

      Xiaohui Li Ze Zhang Jingyi Cui Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027

    8. [8]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

    9. [9]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    10. [10]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    11. [11]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    12. [12]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    13. [13]

      Yanling Luo Xuejie Qi Rui Shen Xuling Peng Xiaoyan Han . Design and Implementation of Ideological and Political Education in the Physical Chemistry Course at Traditional Chinese Medicine Universities: A Case Study of the Phase Diagram of Water. University Chemistry, 2024, 39(11): 9-14. doi: 10.3866/PKU.DXHX202402003

    14. [14]

      Yang Chen Xiuying Wang Nengqin Jia . Ideological and Political Design, Blended Teaching Practice of Physical Chemistry Experiment: Pb-Sn Binary Metal Phase Diagram. University Chemistry, 2025, 40(3): 223-229. doi: 10.12461/PKU.DXHX202405184

    15. [15]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    16. [16]

      Mengfei HeChao ChenYue TangSi MengZunfa WangLiyu WangJiabao XingXinyu ZhangJiahui HuangJiangbo LuHongmei JingXiangyu LiuHua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 2310029-0. doi: 10.3866/PKU.WHXB202310029

    17. [17]

      Qiuyu Xiang Chunhua Qu Guang Xu Yafei Yang Yue Xia . A Journey beyond “Alum”. University Chemistry, 2024, 39(11): 189-195. doi: 10.12461/PKU.DXHX202404094

    18. [18]

      Cunling Ye Xitong Zhao Hongfang Wang Zhike Wang . A Formula for the Calculation of Complex Concentrations Arising from Side Reactions and Its Applications. University Chemistry, 2024, 39(4): 382-386. doi: 10.3866/PKU.DXHX202310043

    19. [19]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    20. [20]

      Dapeng Liu Fang Wang Jingbin Zeng . Exploration on College Chemistry Teaching Focused on Cultivation of Scientific Research Ability. University Chemistry, 2024, 39(8): 126-131. doi: 10.3866/PKU.DXHX202401034

Metrics
  • PDF Downloads(552)
  • Abstract views(1207)
  • HTML views(67)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return