Citation: WU Xuan-Jun, ZHENG Ji, LI Jiang, CAI Wei-Quan. Molecular Simulation on Hydrogen Storage Capacities of Porous Metal Organic Frameworks[J]. Acta Physico-Chimica Sinica, ;2013, 29(10): 2207-2214. doi: 10.3866/PKU.WHXB201307191 shu

Molecular Simulation on Hydrogen Storage Capacities of Porous Metal Organic Frameworks

  • Received Date: 20 May 2013
    Available Online: 19 July 2013

    Fund Project: 国家自然科学基金(51142002, 51272201) (51142002, 51272201)中央高校基本科研业务费专项资金(2012142, 2013-II-014)资助项目 (2012142, 2013-II-014)

  • The adsorption equilibriumproperties of H2 molecules in various metal-organic frameworks (MOFs) including IRMOF-61, IRMOF-62, and IRMOF-1 were studied using the grand canonical Monte Carlo (GCMC) simulation method with the optimized parameters obtained using the DREIDING force field. The calculated parameters could exactly reproduce the adsorption isotherms of H2 molecules in IRMOF-62. However, they may underestimate the adsorption isothermof H2 molecules in IRMOF-61 at lowpressure. The H2 storage capacities of IRMOF-61 and IRMOF-62 with interpenetrating frameworks were not significantly higher than that of IRMOF-1 at roomtemperature. H2 molecules were preferentially adsorbed near Zn4O units, which were located close to the benzene rings, according to the probability density distribution of H2 molecules in the above MOFs under adsorption equilibriumconditions at 77 K, 100 kPa, and 3.0 MPa. For the MOFs with interpenetrating frameworks, the area with preferential adsorption sites for H2 molecules is smaller and more scattered than the MOF without because of their smaller cavity sizes. The organic linker should be of appropriate length to promote the formation of an interpenetrating framework, which can enhance the interaction between the framework and H2 molecules, and thus improve H2 storage capacity. If the organic linker is too long, it will decrease the adsorption capacity of the MOF for H2 because more corners unable to adsorb H2 are formed.

  • 加载中
    1. [1]

      (1) Rowsell, J. L. C.; Yaghi, O. M. J. Am. Chem. Soc. 2006, 128,1304. doi: 10.1021/ja056639q

    2. [2]

      (2) Wong-Foy, A. G.; Matzger, A. J.; Yagh, O. M. J. Am. Chem. Soc. 2006, 128, 3494. doi: 10.1021/ja058213h

    3. [3]

      (3) Nijem, N.; Veyan, J. F.; Kong, L. Z.; Li, K. H.; Pramanik, S.;Zhao, Y. G.; Li, J.; Langreth, D.; Chabal, Y. J. J. Am. Chem. Soc.2010, 132, 1654. doi: 10.1021/ja908817n

    4. [4]

      (4) Yang, J.; Sudik, A.; Wolverton, C. J. Phys. Chem.C 2007, 111,19134. doi: 10.1021/jp076434z

    5. [5]

      (5) Skipper, C. V. J.; Hoang, T. K. A.; Antonelli, D. M.;Kaltsoyannis, N. Chem. -Eur. J. 2012, 18, 1750. doi: 10.1002/chem.v18.6

    6. [6]

      (6) Lu, H. L.; Wang, J. W.; Liu, C. L.; Ratcliffe, C. I.; Becker, U.;Kumar, R.; Ripmeester, J. J. Am. Chem. Soc. 2012, 134, 9160.doi: 10.1021/ja303222u

    7. [7]

      (7) Senadheera, L.; Conradi, M. S. J. Phys. Chem. B 2007, 111,12097. doi: 10.1021/jp074517+

    8. [8]

      (8) Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.;O'Keeffe, M.; Yaghi, O. M. Science 2002, 295, 469. doi: 10.1126/science.1067208

    9. [9]

      (9) Rowsell, J. L. C.; Spencer, E. C.; Eckert, J.; Howard, J. A. K.;Yaghi, O. M. Science 2005, 309, 1350. doi: 10.1126/science.1113247

    10. [10]

      (10) Li, H.; Eddaoudi, M.; O'Keeffe, M.; Yaghi, O. M. Nature 1999,402, 276. doi: 10.1038/46248

    11. [11]

      (11) Han, S. S.; Furukawa, H.; Yaghi, O. M.; ddard, W. A. J. Am. Chem. Soc. 2008, 130, 11580. doi: 10.1021/ja803247y

    12. [12]

      (12) Lan, J. H.; Cao, D. P.; Wang, W. C. J. Phys. Chem. C 2010, 114,3108. doi: 10.1021/jp9106525

    13. [13]

      (13) Sun, Y. X.; Ben, T.; Wang, L.; Qiu, S. L.; Sun, H. J. Phys. Chem. Lett. 2010, 1, 2753. doi: 10.1021/jz100894u

    14. [14]

      (14) Ben, T.; Ren, H.; Ma, S.; Cao, D.; Lan, J.; Jing, X.; Wang, W.;Xu, J.; Deng, F.; Simmons, J. M.; Qiu, S.; Zhu, G. T. Angew. Chem. Int. Edit. 2009, 48, 9457. doi: 10.1002/anie.200904637

    15. [15]

      (15) Chae, H. K.; Siberio-Pérez, D. Y.; Kim, J.; , Y.; Eddaoudi, M.;Matzger, A. J.; O'Keeffe, M.; Yaghi, O. M. Nature 2004, 427,523.

    16. [16]

      (16) Rosi, N. L.; Eckert, J.; Eddaoudi, M.; Vodak, D. T.; Kim, J.;O'Keefee, M.; Yaghi, O. M. Science 2003, 300, 1127. doi: 10.1126/science.1083440

    17. [17]

      (17) Furukawa, H.; Ko, N.; , Y. B.; Aratani, N.; Choi, S. B.; Choi,E.; Yazaydin, A. Ö.; Snurr, R. Q.; O'Keeffe, M.; Kim, J.; Yaghi,O. M. Science 2010, 329, 424. doi: 10.1126/science.1192160

    18. [18]

      (18) Frost, H.; Düren, T.; Snurr, R. Q. J. Phys. Chem. B 2006, 110,9565. doi: 10.1021/jp060433+

    19. [19]

      (19) Frost, H.; Snurr, R. Q. J. Phys. Chem. C 2007, 111, 18794. doi: 10.1021/jp076657p

    20. [20]

      (20) Dalach, P.; Frost, H.; Snurr, R. Q.; Ellis, D. E. J. Phys. Chem. C2008, 112, 9278. doi: 10.1021/j9801008d

    21. [21]

      (21) Düren, T.; Millange, F.; Ferey, G.;Walton, K. S.; Snurr, R. Q.J. Phys. Chem. C 2007, 111, 15350. doi: 10.1021/jp074723h

    22. [22]

      (22) Bae, Y. S.; Snurr, R. Q. Microporous Mesoporous Mat. 2010,132, 300. doi: 10.1016/j.micromeso.2010.02.023

    23. [23]

      (23) Bae, Y. S.; Snurr, R. Q. Microporous Mesoporous Mat. 2010,135, 178. doi: 10.1016/j.micromeso.2010.07.007

    24. [24]

      (24) Getman, R. B.; Miller, J. H.; Wang, K.; Snurr, R. Q. J. Phys. Chem. C 2011, 115, 2066. doi: 10.1021/jp1094068

    25. [25]

      (25) Tranchemontagne, D. J.; Park, K. S.; Furukawa, H.; Eckert, J.;Knobler, C. B.; Yaghi, O. M. J. Phys. Chem. C 2012, 116,13143. doi: 10.1021/jp302356q

    26. [26]

      (26) Pérez-Pellitero, J.; Amrouche, H.; Siperstein, F. R.; Pirngruber,G.; Nieto-Draghi, C.; Chaplais, G.; Simon-Masseron, A.; Bazer-Bachi, D.; Peralta, D.; Bats, N. Chem. -Eur. J. 2010, 16, 1560.doi: 10.1002/chem.v16:5

    27. [27]

      (27) Pantatosaki, E.; Pazzona, F. G.; Megariotis, G.; Papadopoulos,G. K. J. Phys. Chem. B 2010, 114, 2493. doi: 10.1021/jp911477a

    28. [28]

      (28) Gupta, A.; Chempath, S.; Sanborn, M. J.; Clark, L. A.; Snurr, R.Q. Mol. Simul. 2003, 29, 29. doi: 10.1080/0892702031000065719

    29. [29]

      (29) The Cambridge Crystallographic Data Centre. http://www.ccdc.cam.ac.uk (accessed March 2013).

    30. [30]

      (30) Buch, V. J. Chem. Phys. 1994, 100, 7610. doi: 10.1063/1.466854

    31. [31]

      (31) Peng, D. Y.; Robinson, D. B. Ind. Eng. Chem. Fund. 1976, 15,59. doi: 10.1021/i160057a011

    32. [32]

      (32) Myers, A. L.; Monson, P. A. Langmuir 2002, 18, 10261. doi: 10.1021/la026399h

    33. [33]

      (33) Humphrey, W.; Dalke, A.; Schulten, K. J. Mol. Graph. 1996,14,33. doi: 10.1016/0263-7855(96)00018-5

    34. [34]

      (34) Wu, X. J.; Yang, X.; Song, J.; Cai, W. Q. Acta Chim. Sin. 2012,70, 2518. [吴选军,杨旭,宋杰,蔡卫权. 化学学报, 2012,70, 2518.] doi: 10.6023/A12110858

    35. [35]

      (35) Han, S. S.; Choi, S. H.; ddard, W. A. J. Phys. Chem. C 2011,115, 3507. doi: 10.1021/jp200321y


  • 加载中
    1. [1]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    2. [2]

      Mengzhen JIANGQian WANGJunfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355

    3. [3]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    4. [4]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

    5. [5]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    6. [6]

      Yan XinYunnian GeZezhong LiQiaobao ZhangHuajun Tian . Research Progress on Modification Strategies of Organic Electrode Materials for Energy Storage Batteries. Acta Physico-Chimica Sinica, 2024, 40(2): 2303060-0. doi: 10.3866/PKU.WHXB202303060

    7. [7]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    8. [8]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    9. [9]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    10. [10]

      Wenxiu YangJinfeng ZhangQuanlong XuYun YangLijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014

    11. [11]

      Qianqian ZHULihui XUHong PANChengjian YAOHong ZHAONan MAXiaolin SHIZihan SHENWeijun ZHANGZhongjian WANG . Waste cotton fabric-ased porous carbon materials: Preparation and wave-absorbing properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1555-1564. doi: 10.11862/CJIC.20250040

    12. [12]

      Lina Feng Guoyu Jiang Xiaoxia Jian Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171

    13. [13]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    14. [14]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    15. [15]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    16. [16]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    17. [17]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    18. [18]

      Bin HEHao ZHANGLin XUYanghe LIUFeifan LANGJiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161

    19. [19]

      Xinran Zhang Siqi Liu Yichi Chen Qingli Zou Qinghong Xu Yaqin Huang . From Protein to Energy Storage Materials: Edible Gelatin Jelly Electrolyte. University Chemistry, 2025, 40(7): 255-266. doi: 10.12461/PKU.DXHX202408104

    20. [20]

      Wei Li Jinfan Xu Yongjun Zhang Ying Guan . 共价有机框架整体材料的制备及食品安全非靶向筛查应用——推荐一个仪器分析综合化学实验. University Chemistry, 2025, 40(6): 276-285. doi: 10.12461/PKU.DXHX202406013

Metrics
  • PDF Downloads(741)
  • Abstract views(1548)
  • HTML views(112)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return