Citation: LI Bo, LÜ ng Xuan. Highly Active and Stable Catalyst for Visible Light Hydrogen Production Based on Oxidative Quenching of Eosin Y[J]. Acta Physico-Chimica Sinica, ;2013, 29(08): 1778-1784. doi: 10.3866/PKU.WHXB201305302 shu

Highly Active and Stable Catalyst for Visible Light Hydrogen Production Based on Oxidative Quenching of Eosin Y

  • Received Date: 16 April 2013
    Available Online: 30 May 2013

    Fund Project: 国家自然科学基金(21173242) (21173242) 国家重点基础研究发展规划项目(973) (2009CB22003) (973) (2009CB22003)国家高技术研究发展计划项目(863) (2012AA051501)资助 (863) (2012AA051501)

  • The effects and mechanism of methyl viologen (MV2+) on photocatalytic hydrogen production over an active, stable catalyst sensitized by Eosin Y (EY) under visible light were studied by UV-Vis absorption, fluorescence spectroscopies and photoelectric experiments. The results showed that MV2+ increased the efficiency of electron transfer from excited states of EY to the surface of Pt/TiO2 and suppressed accumulation of unstable intermediate EY3-· by an oxidative and reductive quenching mechanism. MV2+ also improved the activity and stability of photocatalytic hydrogen production by an EY-sensitized Pt/TiO2 system with triethanolamine (TEOA) as an electron donor. The effects of transient photocurrent and concentration of EY on the hydrogen production activity of dye-sensitized systems with and without MV2+ provided further evidence that MV2+ acted as an electron transfer agent to effectively improve photoinduced electron transfer and utilization efficiency.

  • 加载中
    1. [1]

      (1) Zhou, P.; Lu, G. X.; Ma, J. T. J. Mol. Catal. (China) 2011, 25 (4), 328. [周鹏, 吕功煊, 马建泰. 分子催化, 2011, 25 (4),328.]

    2. [2]

      (2) Zhou, P.; Zhao, C. J.; Dong,W. P.; Lu, G. X. J. Mol. Catal. (China) 2012, 26 (3), 265. [周鹏, 赵成坚, 董文平, 吕功煊.分子催化, 2012, 26 (3), 265.]

    3. [3]

      (3) Wu, Y. Q.; Lu, G. X.; Li, S. B. J. Mol. Catal. (China) 2004, 18 (2), 125. [吴玉琪, 吕功煊, 李树本. 分子催化, 2004, 18 (2),125.]

    4. [4]

      (4) Elvington, M.; Brown, J.; Arachchige, S. M.; Brewer, K. J.J. Am. Chem. Soc. 2007, 129 (35), 10644. doi: 10.1021/ja073123t

    5. [5]

      (5) Li, Q.; Guo, B.; Yu, J. G.; Ran, J. R.; Zhang, B. H.; Yan, H. J.; ng, J. R. J. Am. Chem. Soc. 2011, 133 (28), 10878.doi: 10.1021/ja2025454

    6. [6]

      (6) Wu, Y. Q.; Lu, G. X. J. Mol. Catal. (China) 2001, 15 (6), 467.[吴玉琪, 吕功煊. 分子催化, 2001, 15 (6), 467.]

    7. [7]

      (7) Silva, L. A.; Ryu, S. Y.; Choi, J.; Choi,W. Y.; Hoffmann, M. R.J. Phys. Chem. C 2008, 112 (32), 12069. doi: 10.1021/jp8037279

    8. [8]

      (8) Teets, T. S.; Nocera, D. G. Chem. Commun. 2011, 47 (33), 9268.doi: 10.1039/c1cc12390d

    9. [9]

      (9) Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.;Carlsson, J. M.; Domen, K.; Antonietti, M. Nat. Mater. 2008, 8 (1), 76.

    10. [10]

      (10) Yan, H. J.; Yang, J. H.; Ma, G. J.;Wu, G. P.; Zong, X.; Lei, Z.B.; Shi, J. Y.; Li, C. J. Catal. 2009, 266 (2), 165. doi: 10.1016/j.jcat.2009.06.024

    11. [11]

      (11) Yu, J.; Qi, L.; Jaroniec, M. J. Phys. Chem. C 2010, 114 (30),13118. doi: 10.1021/jp104488b

    12. [12]

      (12) Zheng, X. H.; Zhang, B.; Li, Q. L.; Jin, Z. S. J. Mol. Catal. (China) 1991, 5 (4), 340. [郑新华, 张兵, 李庆霖, 金振声.分子催化, 1991, 5 (4), 340.]

    13. [13]

      (13) Min, S. X.; Lü, G. X. Acta Phys. -Chim. Sin. 2011, 27 (9), 2178.[敏世雄, 吕功煊. 物理化学学报, 2011, 27 (9), 2178.]doi: 10.3866/PKU.WHXB20110904

    14. [14]

      (14) Chen, K. S.; Liu,W. H.;Wang, Y. H.; Lai, C. H.; Chou, P. T.;Lee, G. H.; Chen, K.; Chen, H. Y.; Chi, Y.; Tung, F. C. Adv. Funct. Mater. 2007, 17 (15), 2964.

    15. [15]

      (15) Kubo,W.; Murakoshi, K.; Kitamura, T.; Yoshida, S.; Haruki,M.; Hanabusa, K.; Shirai, H.;Wada, Y.; Yanagida, S. J. Phys. Chem. B 2001, 105 (51), 12809. doi: 10.1021/jp012026y

    16. [16]

      (16) Li, Y. X.; Xie, C. F.; Peng, S. Q.; Lu, G. X.; Li, S. B. J. Mol. Catal. A: Chem. 2008, 282 (1), 117.

    17. [17]

      (17) Li, Y.; Zhang, J. Laser & Photonics Rev. 2010, 4 (4), 517.

    18. [18]

      (18) Hashimoto, K.; Kawai, T.; Sakata, T. Chem. Lett. 1983, 12 (5),709.

    19. [19]

      (19) Misawa, H.; Sakuragi, H.; Usui, Y.; Tokumaru, K. Chem. Lett.1983, 7, 1021.

    20. [20]

      (20) Li, Y. X.; Guo, M. M.; Peng, S. Q.; Lu, G. X.; Li, S. B. Int. J. Hydrog. Energy 2009, 34 (14), 5629. doi: 10.1016/j.ijhydene.2009.05.100

    21. [21]

      (21) Abe, R.; Hara, K.; Sayama, K.; Domen, K.; Arakawa, H.J. Photochem. Photobiol. A: Chem. 2000, 137 (1), 63.doi: 10.1016/S1010-6030(00)00351-8

    22. [22]

      (22) Shimidzu, T.; Iyoda, T.; Koide, Y. J. Am. Chem. Soc. 1985, 107 (1), 35. doi: 10.1021/ja00287a007

    23. [23]

      (23) Kalyanasundaram, K.; Kiwi, J.; Grätzel, M. Helv. Chim. Acta1978, 61, 2720.

    24. [24]

      (24) Islam, S. D. M.; Konishi, T.; Fujitsuka, M.; Ito, O.; Nakamura,Y.; Usui, Y. Photochem. Photobiol. 2000, 71 (6), 675.doi: 10.1562/0031-8655(2000)071<0675:PROMVU>2.0.CO;2

    25. [25]

      (25) Keller, V.; Bernhardt, P.; Garin, F. J. Catal. 2003, 215 (1), 129.doi: 10.1016/S0021-9517(03)00002-2

    26. [26]

      (26) Zhang,W.; Hong, J.; Zheng, J.; Huang, Z. Y.; Zhou, J. R.; Xu,R. J. Am. Chem. Soc. 2011, 133 (51), 20680. doi: 10.1021/ja208555h

    27. [27]

      (27) Zheng, Z. K.; Huang, B. B.; Qin, X. Y.; Zhang, X. Y.; Dai, Y.;Whangbo, M. H. J. Mater. Chem. 2011, 21 (25), 9079.doi: 10.1039/c1jm10983a

    28. [28]

      (28) Pelet, S.; Grätzel, M.; Moser, J. E. J. Phys. Chem. B 2003, 107,3215.

    29. [29]

      (29) Dürr, H.; Boβmann, S.; Beuerlein, A. J. Photochem. Photobiol. A: Chem. 1993, 73, 233. doi: 10.1016/1010-6030(93)90010-I


  • 加载中
    1. [1]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    2. [2]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    3. [3]

      Jiawei HuKai XiaAo YangZhihao ZhangWen XiaoChao LiuQinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043

    4. [4]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

    5. [5]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    6. [6]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    7. [7]

      Shuang CaoBo ZhongChuanbiao BieBei ChengFeiyan Xu . Insights into Photocatalytic Mechanism of H2 Production Integrated with Organic Transformation over WO3/Zn0.5Cd0.5S S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(5): 2307016-0. doi: 10.3866/PKU.WHXB202307016

    8. [8]

      Jingzhao ChengShiyu GaoBei ChengKai YangWang WangShaowen Cao . Construction of 4-Amino-1H-imidazole-5-carbonitrile Modified Carbon Nitride-Based Donor-Acceptor Photocatalyst for Efficient Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-0. doi: 10.3866/PKU.WHXB202406026

    9. [9]

      Sumiya Akter DristyMd Ahasan HabibShusen LinMehedi Hasan JoniRutuja MandavkarYoung-Uk ChungMd NajibullahJihoon Lee . Exploring Zn doped NiBP microspheres as efficient and stable electrocatalyst for industrial-scale water splitting. Acta Physico-Chimica Sinica, 2025, 41(7): 100079-0. doi: 10.1016/j.actphy.2025.100079

    10. [10]

      Hailian TangSiyuan ChenQiaoyun LiuGuoyi BaiBotao QiaoLiu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004

    11. [11]

      Peipei SunJinyuan ZhangYanhua SongZhao MoZhigang ChenHui Xu . Built-in Electric Fields Enhancing Photocarrier Separation and H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-0. doi: 10.3866/PKU.WHXB202311001

    12. [12]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    13. [13]

      Mingxuan QiLanyu JinHonghe YaoZipeng XuTeng ChengQi ChenCheng ZhuYang Bai . Recent progress on electrical failure and stability of perovskite solar cells under reverse bias. Acta Physico-Chimica Sinica, 2025, 41(8): 100088-0. doi: 10.1016/j.actphy.2025.100088

    14. [14]

      Fanpeng MengFei ZhaoJingkai LinJinsheng ZhaoHuayang ZhangShaobin Wang . Optimizing interfacial electric fields in carbon nitride nanosheet/spherical conjugated polymer S-scheme heterojunction for hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-0. doi: 10.1016/j.actphy.2025.100095

    15. [15]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    16. [16]

      Jianyin HeLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030

    17. [17]

      Jingzhuo TianChaohong GuanHaobin HuEnzhou LiuDongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-0. doi: 10.1016/j.actphy.2025.100068

    18. [18]

      Mengyang LIHao XUZhonghao NIUChunhua GONGWeihui ZHONGJingli XIE . Highly effective catalytic synthesis of β-amino alcohols by using viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1294-1300. doi: 10.11862/CJIC.20250080

    19. [19]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    20. [20]

      Yihan XueXue HanJie ZhangXiaoru Wen . NCQDs修饰FeOOH基复合材料的制备及其电容脱盐性能. Acta Physico-Chimica Sinica, 2025, 41(7): 100072-0. doi: 10.1016/j.actphy.2025.100072

Metrics
  • PDF Downloads(699)
  • Abstract views(1698)
  • HTML views(24)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return