Citation:
LIN Pei-Bin, YANG Yu, CHEN Wei, GAO Han-Yang, CHEN Xiao-Ping, YUAN Jian, SHANGGUAN Wen-Feng. Hydrothermal Synthesis and Activity of NiS-PdS/CdS Catalysts for Photocatalytic Hydrogen Evolution under Visible Light Irradiation[J]. Acta Physico-Chimica Sinica,
;2013, 29(06): 1313-1318.
doi:
10.3866/PKU.WHXB201303141
-
To improve the solar energy transformation efficiency, it is necessary to study the efficiency of photocatalysts under visible light irradiation. In this study, the composite photocatalyst NiS-PdS/CdS has been developed using a hydrothermal method from the raw materials cadmium sulfide, palladium chloride, nickel acetate and thiourea. The characteristics of NiS-PdS/CdS were studied by X-ray diffraction (XRD), UV-Vis diffuse reflectance spectroscopy (DRS), transmission electron microscopy (TEM), and photoluminescence (PL) spectroscopy. In addition, the photocatalytic activities for water splitting were tested using lactic acid as the sacrificial reagent. The results showed that NiS and PdS dispersed well on the surface of CdS. The activity of NiS-PdS/CdS was much higher than that of CdS under visible light irradiation. When the loading amount of NiS and PdS reached 1.5% and 0.41% (w), respectively, NiS-PdS/ CdS showed the highest activity. The H2 evolution rate increased up to 6556 μmol·h-1, which was six times higher than that of unloaded CdS and nearly two times higher than that of NiS/CdS. The apparent quantum yield was 47.5% (λ=420 nm). The co-catalysts NiS and PdS prompted the transfer of photogenerated electrons and holes, respectively. Compared with single-loading, co-loading the two co-catalysts could transfer and separate charge carriers more efficiently, resulting in enhancement of the activity for photocatalytic hydrogen production.
-
Keywords:
-
NiS-PdS/CdS
, - Hydrothermal method,
- Co-loading,
- Photocatalysis,
- Hydrogen energy
-
-
-
-
[1]
(1) Osterloh, F. E. Chem. Mater. 2008, 20, 35. doi: 10.1021/cm7024203
-
[2]
(2) Kudo, A.; Miseki, Y. Chem. Soc. Rev. 2009, 38, 253. doi: 10.1039/b800489g
-
[3]
(3) Maeda, K.; Domen, K. J. Phys. Chem. C 2007, 111, 7851 doi: 10.1021/jp070911w
-
[4]
(4) Kato, H.; Asakura, K.; Kudo, A. J. Am. Chem. Soc. 2003, 125,3082. doi: 10.1021/ja027751g
-
[5]
(5) Chen,W.; Gao, H. Y.; Yang, Y.; Lin, P. B.; Yuan, J.; Shangguan,W. F.; Su, J. C.; Sun, Y. Z. Acta Phys. -Chim. Sin. 2012, 28,2911. [陈威, 高寒阳, 杨俞, 林培宾, 袁坚, 上官文峰,苏佳纯, 孙洋洲. 物理化学学报, 2012, 28, 2911.] doi: 10.3866/PKU.WHXB201208011
-
[6]
(6) Murphy, A. B.; Barnes, P. R. F.; Randeniya, L. K.; Plumb, I. C.;Grey, I. E.; Horne, M. D.; Glasscock, J. A. Int. J. Hydrog. Energy 2006, 31, 1999. doi: 10.1016/j.ijhydene.2006.01.014
-
[7]
(7) Chen, X. P.; Shangguan,W. F. Front. Energy doi: 10.1007/s11708-012-0228-4
-
[8]
(8) Wen, F. Y.; Yang, J. H.; Zong, X.; Ma, Y.; Xu, Q.; Ma, B. J.; Li,C. Progress in Chemistry 2009, 21, 2285. [温福宇, 杨金辉,宗旭, 马艺, 徐倩, 马保军, 李灿. 化学进展, 2009, 21,2285.]
-
[9]
(9) Williams, R. J. Chem. Phys. 1960, 32, 1505. doi: 10.1063/1.1730950
-
[10]
(10) Sathish, M.; Viswanathan, B.; Viswanath, R. P. J. Hydrog. Energy 2006, 31, 891. doi: 10.1016/j.ijhydene.2005.08.002
-
[11]
(11) Li, Y. X.; Xie, Y. Z.; Peng, S. Q.; Lu, G. X.; Li, S. B.Chemosphere 2006, 63, 1312. doi: 10.1016/j.chemosphere.2005.09.004
-
[12]
(12) Sakata, T.; Hashimoto, K.; Kawai, T. J. Phys. Chem. 1984, 88,5214
-
[13]
(13) Zong, X.; Han, J. F.; Ma, G. J.; Yan, H. J.;Wu, G. P.; Li, C.J. Phys. Chem. C 2011, 115, 12202. doi: 10.1021/jp2006777
-
[14]
(14) Zong, X.; Yan, H. J.;Wu, G. P.; Ma, G. J.;Wen, F. Y.;Wang, L.;Li, C. J. Am. Chem. Soc. 2008, 130, 7176. doi: 10.1021/ja8007825
-
[15]
(15) Yan, H. J.; Yang, J. H.; Ma, G. J.;Wu, G. P.; Zong, X.; Lei, Z.B.; Shi, J. Y.; Li, C. J. Catal. 2009, 266, 165. doi: 10.1016/j.jcat.2009.06.024
-
[16]
(16) Bao, N. Z.; Shen, L. M.; Takata, T.; Domen, K. Chem. Mater.2008, 20, 110. doi: 10.1021/cm7029344
-
[17]
(17) Zhang,W.;Wang, Y.;Wang, Z.; Zhong, Z.; Xu, R. Chem. Commun. 2010, 46, 7631. doi: 10.1039/c0cc01562h
-
[18]
(18) Harada, H.; Sakata, T.; Ueda, T. J. Am. Chem. Soc. 1985, 107,1773. doi: 10.1021/ja00292a060
-
[19]
(19) Lin, K.; Chuang, C.; Lee, Y.; Li, F.; Chang, Y. J. Phys. Chem. C2012, 116, 1550. doi: 10.1021/jp209353j
-
[20]
(20) Spanhel, L.;Weller, H.; Henglein, A. J. Am. Chem. Soc. 1987,109, 6632. doi: 10.1021/ja00256a012
-
[21]
(21) Hurum, D. C.; Agrios, A. G.; Gray, K. A. J. Phys. Chem. B2003, 107, 4545. doi: 10.1021/jp0273934
-
[22]
(22) Zou, Z. G.; Ye, J. H.; Sayama, K.; Arakawa, H. Nature 2001,414, 625. doi: 10.1038/414625a
-
[23]
(23) Assuncao, N.; Giz, M.; Tremiliosi, G.; nzalez, E.J. Electrochem. Soc. 1997, 144, 2794. doi: 10.1149/1.1837897
-
[24]
(24) Yang, J. H.; Yan, H. J.;Wang, X. L.;Wen, F. Y.;Wang, Z. J.;Fan, D. Y.; Shi, J. Y.; Li, C. J. Catal. 2012, 290, 151.
-
[25]
(25) Min, S. X.; Lü, G. X. Acta Phys. -Chim. Sin. 2011, 27, 2178.[敏世雄, 吕功煊. 物理化学学报, 2011, 27, 2178.] doi: 10.3866/PKU.WHXB20110904
-
[1]
-
-
-
[1]
Xi YANG , Chunxiang CHANG , Yingpeng XIE , Yang LI , Yuhui CHEN , Borao WANG , Ludong YI , Zhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371
-
[2]
Jiajie Cai , Chang Cheng , Bowen Liu , Jianjun Zhang , Chuanjia Jiang , Bei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084
-
[3]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[4]
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016
-
[5]
Yifan ZHAO , Qiyun MAO , Meijing GUO , Guoying ZHANG , Tongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001
-
[6]
Haitao Wang , Lianglang Yu , Jizhou Jiang , Arramel , Jing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047
-
[7]
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014
-
[8]
Jianyin He , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030
-
[9]
Yadan Luo , Hao Zheng , Xin Li , Fengmin Li , Hua Tang , Xilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052
-
[10]
Jingzhuo Tian , Chaohong Guan , Haobin Hu , Enzhou Liu , Dongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-0. doi: 10.1016/j.actphy.2025.100068
-
[11]
Linfeng Xiao , Wanlu Ren , Shishi Shen , Mengshan Chen , Runhua Liao , Yingtang Zhou , Xibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036
-
[12]
Jiawei Hu , Kai Xia , Ao Yang , Zhihao Zhang , Wen Xiao , Chao Liu , Qinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043
-
[13]
Chenye An , Sikandaier Abiduweili , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019
-
[14]
Qin Hu , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Construction of Electron Bridge and Activation of MoS2 Inert Basal Planes by Ni Doping for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-0. doi: 10.3866/PKU.WHXB202406024
-
[15]
Shijie Li , Ke Rong , Xiaoqin Wang , Chuqi Shen , Fang Yang , Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005
-
[16]
Yuchen Zhou , Huanmin Liu , Hongxing Li , Xinyu Song , Yonghua Tang , Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067
-
[17]
Qin Li , Huihui Zhang , Huajun Gu , Yuanyuan Cui , Ruihua Gao , Wei-Lin Dai . In situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 2402016-0. doi: 10.3866/PKU.WHXB202402016
-
[18]
Xiaogang Liu , Mengyu Chen , Yanyan Li , Xiantao Ma . Experimental Reform in Applied Chemistry for Cultivating Innovative Competence: A Case Study of Catalytic Hydrogen Production from Liquid Formaldehyde Reforming at Room Temperature. University Chemistry, 2025, 40(7): 300-307. doi: 10.12461/PKU.DXHX202408007
-
[19]
Fei Xie , Chengcheng Yuan , Haiyan Tan , Alireza Z. Moshfegh , Bicheng Zhu , Jiaguo Yu . d-Band Center Regulated O2 Adsorption on Transition Metal Single Atoms Loaded COF: A DFT Study. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-0. doi: 10.3866/PKU.WHXB202407013
-
[20]
Fengying Zhang , Yanglin Mei , Yuman Jiang , Shenshen Zheng , Kaibo Zheng , Ying Zhou . Research progress of transient absorption spectroscopy in solar energy conversion and utilization. Acta Physico-Chimica Sinica, 2025, 41(9): 100118-0. doi: 10.1016/j.actphy.2025.100118
-
[1]
Metrics
- PDF Downloads(879)
- Abstract views(1466)
- HTML views(84)