Citation: NG Qiang, WANG Hong, LIAO Xiao-Zhen, MA Wei, HE Yu-Shi, MA Zi-Feng. Electrochemical Performance of Vanadium Modified LiFe0.5Mn0.5PO4/C Cathode Materials for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinica, ;2012, 28(01): 100-104. doi: 10.3866/PKU.WHXB201228100 shu

Electrochemical Performance of Vanadium Modified LiFe0.5Mn0.5PO4/C Cathode Materials for Lithium-Ion Batteries

  • Received Date: 20 July 2011
    Available Online: 19 October 2011

    Fund Project: 国家自然科学基金(21073120, 20773087, 21006063) (21073120, 20773087, 21006063)上海市科学技术委员会科技支撑项目(09DZ1203603, 10DZ1202702)资助项目 (09DZ1203603, 10DZ1202702)

  • Vanadium modified LiFe0.5Mn0.5PO4/C cathode materials with a nominal composition of (1-x)LiFe0.5Mn0.5PO4-xLi3V2(PO4)3/C (x=0, 0.1, 0.2, 0.25, 1) were prepared by a solid-state reaction using NH4VO3 as the vanadium source. The electrochemical performance of the LiFe0.5Mn0.5PO4-based compounds improved upon vanadium modification. The 0.8LiFe0.5Mn0.5PO4-0.2Li3V2(PO4)3/C (LFMP-LVP/C) sample exhibited the highest discharge capacity of 141 mAh·g-1 at 0.1C rate. X-ray diffraction analyses revealed a dual phase of the LFMP-LVP/C composite with the coexistence of an olivine-type LiFe0.5Mn0.5PO4/C phase and a NASICON-type Li3V2(PO4)3 phase. Energy dispersive X-ray spectroscopy (EDS) analysis indicates a uniform distribution of Fe, Mn, V, and P in the composite. The electronic conductivity of LFMP-LVP was found to be 2.7×10-7 S·cm-1, which is much higher than the value (1.9×10-8 S·cm-1) of LiFe0.5Mn0.5PO4 and similar to the value (2.3 × 10-7 S·cm-1) of pure Li3V2(PO4)3. Vanadium modification remarkably reduced the electrode polarization of the LFMP-LVP/C cathode during the charge-discharge procedure. This suggests that vanadium modification is an effective method to improve the electrochemical performance of olivine-type cathode materials.
  • 加载中
    1. [1]

      (1) Tarascon, J. M.; Armand, M. Nature 2008, 451, 652.  

    2. [2]

      (2) Whittingham, M. S. Chem. Rev. 2004, 104, 4271.  

    3. [3]

      (3) Padhi, A. K.; Nanjundaswamy, K. S.; odenough, J. B. J. Electrochem. Soc. 1997, 144, 1188.  

    4. [4]

      (4) Delacourt, C.; Poizot, P.; Morcrette, M.; Tarascon, J. M.; Masquelier, C. Chem. Mater. 2004, 16, 93.  

    5. [5]

      (5) Liao, X. Z.; Ma, Z. F.;Wang, L.; Zhang, X. M.; Jiang, Y.; He, Y. S. Electrochem. Solid-State Lett. 2004, 7, A552.

    6. [6]

      (6) Li, G. H.; Azuma, H.; Tohda, M. Electrochem. Solid-State Lett. 2002, 5, A135.

    7. [7]

      (7) Delacourt, C.; Laffont. L.; Bouchet, R.,Wurm, C.; Leriche, J. B.; Morcrette, M.; Tarascon, J. M.; Masquelier, C. J. Electrochem. Soc. 2005, 152, A913.

    8. [8]

      (8) Kim, J. K.; Shin, C. R.; Ahn, J. H.; Matic, A, Jacobsson, P. Electrochem. Commun. 2011, 13, 1105.  

    9. [9]

      (9) Yonemura, M.; Yamada, A.; Takei, Y.; Sonoyama, N.; Kanno, R. J. Electrochem. Soc. 2004, 151, A1352.

    10. [10]

      (10) Yamada, A.; Kudo, Y.; Liu, K.Y. J. Electrochem. Soc. 2001, 148, A747.

    11. [11]

      (11) Zhang,Y.; Sun, C. S.; Zhou, Z. Electrochem. Commun. 2009, 11, 1183.  

    12. [12]

      (12) Honma,T.; Nagamine, K.; Komatsu, T. Ceramics International 2010, 36, 1137.  

    13. [13]

      (13) Hong, J.;Wang, F.;Wang, X. L.; Graetz, J. J. Power Sources 2011, 196, 3659.  

    14. [14]

      (14) Oh, S. M.; Jung, H. G.; Yoon, C. S.; Myung, S. T.; Chen, Z. H.; Aminee, K.; KSun, Y. J. Power Sources 2011, 196, 6924.  

    15. [15]

      (15) Burba, C. M.; Frech, R. J. Power Sources 2007, 172, 870.  

    16. [16]

      (16) Jiang, T.; Pan,W. C.;Wang, J.; Bie, X. F.; Du, F.;Wei, Y. J.; Wang, C. Z.; Chen, G. Electrochim. Acta 2010, 55, 3864.  

    17. [17]

      (17) Yin, S.C.; Strobel, P.S.; Grondey, H.; Nazar, L. F. Chem. Mater. 2004, 16, 1456.  

    18. [18]

      (18) Wang, L.; Li, Z. C.; Xu, H. J.; Zhang, K. L. J. Phys. Chem. C 2008, 112, 308.  

    19. [19]

      (19) Yang, M. R.; Ke,W. H.;Wu, S. H. J. Power Sources 2007, 165, 646.  

    20. [20]

      (20) Chen, X. J.; Cao, G. S.; Zhao, X. B.; Tu, J. P.; Zhu, T. J. J. Alloy. Compd. 2008, 463, 385.  

    21. [21]

      (21) Xiang, J. Y.; Tu, J. P.; Zhang, L.;Wang, X. L.; Zhou, Y.; Qiao, Y. Q.; Lu, Y. J. Power Sources 2010, 195, 8331.  

    22. [22]

      (22) Zheng, J. C.; Li, X. H.;Wang, Z. X.; Niu, S. S.; Liu, D. R.;Wu, L.; Li, L. J.; Li, J. H.; Guo, H. J. J. Power Sources 2010, 195, 2935.  

    23. [23]

      (23) Ma, J.; Li, B. H.; Du, H. D.; Xu, C. J.; Kang, F. Y. J. Electrochem. Soc. 2011, 158, A26.

    24. [24]

      (24) Li, G. H., Azuma, H., Tohda, M. J. Electrochem. Soc. 2002, 149, A743.

    25. [25]

      (25) Bini, M.; Ferrari, S.; Capsoni, D.; Massarotti, V. Electrochim. Acta 2011, 56, 2648.  

  • 加载中
    1. [1]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    2. [2]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    3. [3]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    4. [4]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    5. [5]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    6. [6]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

    7. [7]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    8. [8]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    9. [9]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    10. [10]

      Jiaxuan Zuo Kun Zhang Jing Wang Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042

    11. [11]

      Lingbang Qiu Jiangmin Jiang Libo Wang Lang Bai Fei Zhou Gaoyu Zhou Quanchao Zhuang Yanhua Cui . 原位电化学阻抗谱监测长寿命热电池Nb12WO33正极材料的高温双放电机制. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-. doi: 10.1016/j.actphy.2024.100040

    12. [12]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    13. [13]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    14. [14]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    15. [15]

      Hengyi ZHULiyun JUHaoyue ZHANGJiaxin DUYutong XIELi SONGYachao JINMingdao ZHANG . Efficient regeneration of waste LiNi0.5Co0.2Mn0.3O2 cathode toward high-performance Li-ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 625-638. doi: 10.11862/CJIC.20240358

    16. [16]

      Gregorio F. Ortiz . Some facets of the Mg/Na3VCr0.5Fe0.5(PO4)3 battery. Chinese Chemical Letters, 2024, 35(10): 109391-. doi: 10.1016/j.cclet.2023.109391

    17. [17]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    18. [18]

      Tao LongPeng ChenBin FengCaili YangKairong WangYulei WangCan ChenYaping WangRuotong LiMeng WuMinhuan LanWei Kong PangJian-Fang WuYuan-Li Ding . Reinforced concrete-like Na3.5V1.5Mn0.5(PO4)3@graphene hybrids with hierarchical porosity as durable and high-rate sodium-ion battery cathode. Chinese Chemical Letters, 2024, 35(4): 109267-. doi: 10.1016/j.cclet.2023.109267

    19. [19]

      Ruofan YinZhaoxin GuoRui LiuXian-Sen Tao . Ultrafast synthesis of Na3V2(PO4)3 cathode for high performance sodium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109643-. doi: 10.1016/j.cclet.2024.109643

    20. [20]

      Jie WUZhihong LUOXiaoli CHENFangfang XIONGLi CHENBiao ZHANGBin SHIQuansheng OUYANGJiaojing SHAO . Critical roles of AlPO4 coating in enhancing cycling stability and rate capability of high voltage LiNi0.5Mn1.5O4 cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 948-958. doi: 10.11862/CJIC.20240400

Metrics
  • PDF Downloads(1177)
  • Abstract views(2885)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return