Citation:
NG Qiang, WANG Hong, LIAO Xiao-Zhen, MA Wei, HE Yu-Shi, MA Zi-Feng. Electrochemical Performance of Vanadium Modified LiFe0.5Mn0.5PO4/C Cathode Materials for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinica,
;2012, 28(01): 100-104.
doi:
10.3866/PKU.WHXB201228100
-
Vanadium modified LiFe0.5Mn0.5PO4/C cathode materials with a nominal composition of (1-x)LiFe0.5Mn0.5PO4-xLi3V2(PO4)3/C (x=0, 0.1, 0.2, 0.25, 1) were prepared by a solid-state reaction using NH4VO3 as the vanadium source. The electrochemical performance of the LiFe0.5Mn0.5PO4-based compounds improved upon vanadium modification. The 0.8LiFe0.5Mn0.5PO4-0.2Li3V2(PO4)3/C (LFMP-LVP/C) sample exhibited the highest discharge capacity of 141 mAh·g-1 at 0.1C rate. X-ray diffraction analyses revealed a dual phase of the LFMP-LVP/C composite with the coexistence of an olivine-type LiFe0.5Mn0.5PO4/C phase and a NASICON-type Li3V2(PO4)3 phase. Energy dispersive X-ray spectroscopy (EDS) analysis indicates a uniform distribution of Fe, Mn, V, and P in the composite. The electronic conductivity of LFMP-LVP was found to be 2.7×10-7 S·cm-1, which is much higher than the value (1.9×10-8 S·cm-1) of LiFe0.5Mn0.5PO4 and similar to the value (2.3 × 10-7 S·cm-1) of pure Li3V2(PO4)3. Vanadium modification remarkably reduced the electrode polarization of the LFMP-LVP/C cathode during the charge-discharge procedure. This suggests that vanadium modification is an effective method to improve the electrochemical performance of olivine-type cathode materials.
-
-
- [1]
- [2]
-
[3]
(3) Padhi, A. K.; Nanjundaswamy, K. S.; odenough, J. B. J. Electrochem. Soc. 1997, 144, 1188.
-
[4]
(4) Delacourt, C.; Poizot, P.; Morcrette, M.; Tarascon, J. M.; Masquelier, C. Chem. Mater. 2004, 16, 93.
-
[5]
(5) Liao, X. Z.; Ma, Z. F.;Wang, L.; Zhang, X. M.; Jiang, Y.; He, Y. S. Electrochem. Solid-State Lett. 2004, 7, A552.
-
[6]
(6) Li, G. H.; Azuma, H.; Tohda, M. Electrochem. Solid-State Lett. 2002, 5, A135.
-
[7]
(7) Delacourt, C.; Laffont. L.; Bouchet, R.,Wurm, C.; Leriche, J. B.; Morcrette, M.; Tarascon, J. M.; Masquelier, C. J. Electrochem. Soc. 2005, 152, A913.
-
[8]
(8) Kim, J. K.; Shin, C. R.; Ahn, J. H.; Matic, A, Jacobsson, P. Electrochem. Commun. 2011, 13, 1105.
-
[9]
(9) Yonemura, M.; Yamada, A.; Takei, Y.; Sonoyama, N.; Kanno, R. J. Electrochem. Soc. 2004, 151, A1352.
-
[10]
(10) Yamada, A.; Kudo, Y.; Liu, K.Y. J. Electrochem. Soc. 2001, 148, A747.
-
[11]
(11) Zhang,Y.; Sun, C. S.; Zhou, Z. Electrochem. Commun. 2009, 11, 1183.
-
[12]
(12) Honma,T.; Nagamine, K.; Komatsu, T. Ceramics International 2010, 36, 1137.
-
[13]
(13) Hong, J.;Wang, F.;Wang, X. L.; Graetz, J. J. Power Sources 2011, 196, 3659.
-
[14]
(14) Oh, S. M.; Jung, H. G.; Yoon, C. S.; Myung, S. T.; Chen, Z. H.; Aminee, K.; KSun, Y. J. Power Sources 2011, 196, 6924.
-
[15]
(15) Burba, C. M.; Frech, R. J. Power Sources 2007, 172, 870.
-
[16]
(16) Jiang, T.; Pan,W. C.;Wang, J.; Bie, X. F.; Du, F.;Wei, Y. J.; Wang, C. Z.; Chen, G. Electrochim. Acta 2010, 55, 3864.
-
[17]
(17) Yin, S.C.; Strobel, P.S.; Grondey, H.; Nazar, L. F. Chem. Mater. 2004, 16, 1456.
-
[18]
(18) Wang, L.; Li, Z. C.; Xu, H. J.; Zhang, K. L. J. Phys. Chem. C 2008, 112, 308.
-
[19]
(19) Yang, M. R.; Ke,W. H.;Wu, S. H. J. Power Sources 2007, 165, 646.
-
[20]
(20) Chen, X. J.; Cao, G. S.; Zhao, X. B.; Tu, J. P.; Zhu, T. J. J. Alloy. Compd. 2008, 463, 385.
-
[21]
(21) Xiang, J. Y.; Tu, J. P.; Zhang, L.;Wang, X. L.; Zhou, Y.; Qiao, Y. Q.; Lu, Y. J. Power Sources 2010, 195, 8331.
-
[22]
(22) Zheng, J. C.; Li, X. H.;Wang, Z. X.; Niu, S. S.; Liu, D. R.;Wu, L.; Li, L. J.; Li, J. H.; Guo, H. J. J. Power Sources 2010, 195, 2935.
-
[23]
(23) Ma, J.; Li, B. H.; Du, H. D.; Xu, C. J.; Kang, F. Y. J. Electrochem. Soc. 2011, 158, A26.
-
[24]
(24) Li, G. H., Azuma, H., Tohda, M. J. Electrochem. Soc. 2002, 149, A743.
-
[25]
(25) Bini, M.; Ferrari, S.; Capsoni, D.; Massarotti, V. Electrochim. Acta 2011, 56, 2648.
-
-
-
[1]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
-
[2]
Jianbao Mei , Bei Li , Shu Zhang , Dongdong Xiao , Pu Hu , Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023
-
[3]
Yuanchao LI , Weifeng HUANG , Pengchao LIANG , Zifang ZHAO , Baoyan XING , Dongliang YAN , Li YANG , Songlin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252
-
[4]
Siyu Zhang , Kunhong Gu , Bing'an Lu , Junwei Han , Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028
-
[5]
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
-
[6]
Pengyang FAN , Shan FAN , Qinjin DAI , Xiaoying ZHENG , Wei DONG , Mengxue WANG , Xiaoxiao HUANG , Yong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339
-
[7]
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
-
[8]
Xinpeng LIU , Liuyang ZHAO , Hongyi LI , Yatu CHEN , Aimin WU , Aikui LI , Hao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488
-
[9]
Yuyao Wang , Zhitao Cao , Zeyu Du , Xinxin Cao , Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014
-
[10]
Jiaxuan Zuo , Kun Zhang , Jing Wang , Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042
-
[11]
Lingbang Qiu , Jiangmin Jiang , Libo Wang , Lang Bai , Fei Zhou , Gaoyu Zhou , Quanchao Zhuang , Yanhua Cui . 原位电化学阻抗谱监测长寿命热电池Nb12WO33正极材料的高温双放电机制. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-. doi: 10.1016/j.actphy.2024.100040
-
[12]
Yifeng Xu , Jiquan Liu , Bin Cui , Yan Li , Gang Xie , Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009
-
[13]
Aoyu Huang , Jun Xu , Yu Huang , Gui Chu , Mao Wang , Lili Wang , Yongqi Sun , Zhen Jiang , Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007
-
[14]
Junke LIU , Kungui ZHENG , Wenjing SUN , Gaoyang BAI , Guodong BAI , Zuwei YIN , Yao ZHOU , Juntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189
-
[15]
Hengyi ZHU , Liyun JU , Haoyue ZHANG , Jiaxin DU , Yutong XIE , Li SONG , Yachao JIN , Mingdao ZHANG . Efficient regeneration of waste LiNi0.5Co0.2Mn0.3O2 cathode toward high-performance Li-ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 625-638. doi: 10.11862/CJIC.20240358
-
[16]
Gregorio F. Ortiz . Some facets of the Mg/Na3VCr0.5Fe0.5(PO4)3 battery. Chinese Chemical Letters, 2024, 35(10): 109391-. doi: 10.1016/j.cclet.2023.109391
-
[17]
Xiangyu CAO , Jiaying ZHANG , Yun FENG , Linkun SHEN , Xiuling ZHANG , Juanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270
-
[18]
Tao Long , Peng Chen , Bin Feng , Caili Yang , Kairong Wang , Yulei Wang , Can Chen , Yaping Wang , Ruotong Li , Meng Wu , Minhuan Lan , Wei Kong Pang , Jian-Fang Wu , Yuan-Li Ding . Reinforced concrete-like Na3.5V1.5Mn0.5(PO4)3@graphene hybrids with hierarchical porosity as durable and high-rate sodium-ion battery cathode. Chinese Chemical Letters, 2024, 35(4): 109267-. doi: 10.1016/j.cclet.2023.109267
-
[19]
Ruofan Yin , Zhaoxin Guo , Rui Liu , Xian-Sen Tao . Ultrafast synthesis of Na3V2(PO4)3 cathode for high performance sodium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109643-. doi: 10.1016/j.cclet.2024.109643
-
[20]
Jie WU , Zhihong LUO , Xiaoli CHEN , Fangfang XIONG , Li CHEN , Biao ZHANG , Bin SHI , Quansheng OUYANG , Jiaojing SHAO . Critical roles of AlPO4 coating in enhancing cycling stability and rate capability of high voltage LiNi0.5Mn1.5O4 cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 948-958. doi: 10.11862/CJIC.20240400
-
[1]
Metrics
- PDF Downloads(1177)
- Abstract views(2885)
- HTML views(11)