Citation: AO Yin-Yong, WANG Qian, PENG Jing, HUANG Wei, ZHAI Mao-Lin, LONG Xing-Gui. Influence of Atmosphere on the Radiolysis Products of BPC6 under γ-Irradiation[J]. Acta Physico-Chimica Sinica, ;2013, 29(02): 418-422. doi: 10.3866/PKU.WHXB201211215 shu

Influence of Atmosphere on the Radiolysis Products of BPC6 under γ-Irradiation

  • Received Date: 25 September 2012
    Available Online: 21 November 2012

    Fund Project: 国家自然科学基金(91126014, 11079007, 21073008) (91126014, 11079007, 21073008)高等学校博士点基金(20100001110021)资助项目 (20100001110021)

  • Bis(2-propyloxy)calix[4]crown-6 (BPC6) is an effective separation agent for the removal of cesium from high-level liquid wastes, because of its high selectivity and coordination capacity toward cesium ions. BPC6 will be exposed to ionizing radiation generated by radionuclides during the treatment of high-level liquid nuclear wastes, so it is necessary to investigate the radiolysis mechanism of BPC6 under γ-irradiation conditions. In this work, the radiolysis products including the gaseous and solid products of BPC6 solid were systematically assessed using gas chromatography (GC), micro Fourier transform infrared (Micro-FTIR) spectroscopy, and nuclear magnetic resonance spectroscopy. The radiolysis ratio for BPC6 in an O2 atmosphere (approximately 10.4%) was significantly higher than that in an N2 atmosphere (approximately 2.5%). The main radiolytic gas products of BPC6 under O2 were H2, CH4, CO, and CO2, while those under N2 were H2, CH4, CO, CO2, C2H4, C2H6, C3H6, and C3H8. Finally, a mechanism for the radiolysis of BPC6 under different atmospheres was suggested, in terms of the gas and solid radiolytic products. This work will be of significant help in understanding the degradation mechanism of the BPC6 extraction system.

  • 加载中
    1. [1]

      (1) Lumetta, G. I.; Nash, K. L.; Clark, S. B.; Friese, J. I. Ind. Eng. Chem. Res. 2006, 44, 2887.

    2. [2]

      (2) Salorinne, K.; Nissinen, M. J. Inclusion Phenom. Macro. 2008,61, 11. doi: 10.1007/s10847-008-9411-y

    3. [3]

      (3) Mathieu, A.; Asfari, Z.; Thuery, P.; Nierlich, M.; Faure, S.;Vicens, J. J. Inclusion Phenom. Macro. 2001, 40, 173. doi: 10.1023/A:1011803705182

    4. [4]

      (4) Kim, J. S.; Yu, I. Y.; Pang, J. H.; Kim, J. K.; Lee, Y. I.; Lee, K.W.; Oh,W. Z. Microchem. J. 1998, 58, 225. doi: 10.1006/mchj.1997.1545

    5. [5]

      (5) Arnaud-Neu, F.; Asfari, Z.; Souley, B.; Vicens, J. Anales De Quimica-International Edition 1997, 93, 404.

    6. [6]

      (6) Arnaud-Neu, F.; Asfari, Z.; Souley, B.; Vicens, J. New J. Chem.1996, 20, 453.

    7. [7]

      (7) Haverlock, T. J.; Bonnesen, P. V.; Sachleben, R. A.; Moyer, B.A. Radiochim. Acta 1997, 76, 103.

    8. [8]

      (8) Khrifi, S.; Guelzim, A.; Baert, F.; Asfari, Z.; Vicens, J.J. Inclusion Phenom. Mol. Recognit. Chem. 1997, 29, 187. doi: 10.1023/A:1007923507891

    9. [9]

      (9) Alfieri, C.; Dradi, E.; Pochini, A.; Ungaro, R.; Andreetti, G. D.Journal of the Chemical Society-Chemical Communications1983, 1075.

    10. [10]

      (10) Lamouroux, C.; Aychet, N.; Lelievre, A.; Jankowski, C. K.;Moulin, C. Rapid Commun. Mass Spectrom. 2004, 18, 1493.

    11. [11]

      (11) Jankowski, C. K.; Hocquelet, C.; Arseneau, S.; Moulin, C.;Mauclaire, L. J. Photochem. Photobiol. A 2006, 184, 216. doi: 10.1016/j.jphotochem.2006.04.018

    12. [12]

      (12) Jankowski, C. K.; Allain, F.; Dozol, J. F.; Virelizier, H.; Tabet, J.C.; Moulin, C.; Lamouroux, C. Rapid Commun. Mass Spectrom.2003, 17, 1247.

    13. [13]

      (13) Jankowski, C. K.; Dozol, J. F.; Allain, F.; Tabet, J. C.; Ungaro,R.; Casnati, A.; Vicens, J.; Asfari, A.; Boivin, J. Pol. J. Chem.2002, 76, 701.

    14. [14]

      (14) Kroupa, J.; Lhotak, P.; Cuba, V.; John, J.; Rudzevich, V.;Bohmer, V. Radiochim. Acta 2009, 97, 429. doi: 10.1524/ract.2009.1629

    15. [15]

      (15) Feng,W.; Yuan, L. H.; Zheng, S. Y.; Huang, G. L.; Qiao, J. L.;Zhou, Y. Radiat. Phys. Chem. 2000, 57, 425. doi: 10.1016/S0969-806X(99)00451-X

    16. [16]

      (16) Ao, Y. Y.; Peng, J.; Zhang, Y.W.; Yuan, L. Y.; Yu, C. H.; Li, J.Q.; Zhai, M. L. Chin. Sci. Bull. accepted.

    17. [17]

      (17) Zhu, X.W.;Wang, J. C.; Song, L. C. Atomic Energy Science and Technology 2004, 38, 301. [朱晓文, 王建晨, 宋崇立.原子能科学技术, 2004, 38, 301.]

    18. [18]

      (18) Casnati, A.; Pochini, A.; Ungaro, R.; U zzoli, F.; Arnaud, F.;Fanni, S.; Schwing, M. J.; Egberink, R. J. M.; Dejong, F.;Reinhoudt, D. N. J. Am. Chem. Soc. 1995, 117, 2767. doi: 10.1021/ja00115a012

    19. [19]

      (19) Zhu, X.W.;Wang, J. C.; Tong, L. B.; Song, L. C. Atomic Energy Science and Technology 2003, 37, 428. [朱晓文, 王建晨, 童利斌, 宋崇立. 原子能科学技术, 2003, 37, 428.]

    20. [20]

      (20) Shi, J.; Barker, J. R. Journal of Geophysical Research 1992, 97,13039. doi: 10.1029/92JD00571

    21. [21]

      (21) Heller, C. A.; rdon, A. S. J. Phys. Chem. 1960, 64, 390.doi: 10.1021/j100833a003

    22. [22]

      (22) Heller, C. A.; rdon, A. S. J. Phys. Chem. 1956, 60, 1315.doi: 10.1021/j150543a038

    23. [23]

      (23) Ge, M.;Wang,W. F.; Zhao, H.W.; Zhang, Z. Y.; Yu, X. H.; Li,W. X. Chem. Phys. Lett. 2007, 444, 355. doi: 10.1016/j.cplett.2007.07.028

    24. [24]

      (24) Devlin, H. R.; Harris, I. J. Industrial & Engineering Chemistry Fundamentals 1984, 23, 387. doi: 10.1021/i100016a002


  • 加载中
    1. [1]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    2. [2]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    3. [3]

      Wei Li Guoqiang Feng Ze Chang . Teaching Reform of X-ray Diffraction Using Synchrotron Radiation in Materials Chemistry. University Chemistry, 2024, 39(3): 29-35. doi: 10.3866/PKU.DXHX202308060

    4. [4]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    5. [5]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012

    6. [6]

      Haoyu SunDun LiYuanyuan MinYingying WangYanyun MaYiqun ZhengHongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007

    7. [7]

      Runjie Li Hang Liu Xisheng Wang Wanqun Zhang Wanqun Hu Kaiping Yang Qiang Zhou Si Liu Pingping Zhu Wei Shao . 氨基酸的衍生及手性气相色谱分离创新实验. University Chemistry, 2025, 40(6): 286-295. doi: 10.12461/PKU.DXHX202407059

    8. [8]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    9. [9]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

    10. [10]

      Xin Hua Songqin Liu . Research on Teaching Practice of Spectral Analytical Chemistry Based on Thematic Discussion. University Chemistry, 2025, 40(7): 106-111. doi: 10.12461/PKU.DXHX202408043

    11. [11]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    12. [12]

      Dong XiangKunzhen LiKanghua MiaoRan LongYujie XiongXiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027

    13. [13]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    14. [14]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    15. [15]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    16. [16]

      Jingshuo ZhangYue ZhaiZiyun ZhaoJiaxing HeWei WeiJing XiaoShichao WuQuan-Hong Yang . Research Progress of Functional Binders in Silicon-Based Anodes for Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306006-0. doi: 10.3866/PKU.WHXB202306006

    17. [17]

      Jingming Li Bowen Ding Nan Li Nurgul . Application of Comparative Teaching Method in Experimental Project Design of Instrumental Analysis Course: A Case Study in Chromatography Experiment Teaching. University Chemistry, 2024, 39(8): 263-269. doi: 10.3866/PKU.DXHX202312078

    18. [18]

      Xichen YAOShuxian WANGYun WANGCheng WANGChuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384

    19. [19]

      Yajie LiBin ChenYiping WangHui XingWei ZhaoGeng ZhangSiqi Shi . Inhibiting Dendrite Growth by Customizing Electrolyte or Separator to Achieve Anisotropic Lithium-Ion Transport: A Phase-Field Study. Acta Physico-Chimica Sinica, 2024, 40(3): 2305053-0. doi: 10.3866/PKU.WHXB202305053

    20. [20]

      Kexin YanZhaoqi YeLingtao KongHe LiXue YangYahong ZhangHongbin ZhangYi Tang . Seed-Induced Synthesis of Disc-Cluster Zeolite L Mesocrystals with Ultrashort c-Axis: Morphology Control, Decoupled Mechanism, and Enhanced Adsorption. Acta Physico-Chimica Sinica, 2024, 40(9): 2308019-0. doi: 10.3866/PKU.WHXB202308019

Metrics
  • PDF Downloads(633)
  • Abstract views(1570)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return