Citation:
TAO Jing-Liang, XIONG Yuan-Quan. Hydrogen Production from the Decomposition of Ethanol Aqueous Solution Using Glow Discharge Plasma Electrolysis[J]. Acta Physico-Chimica Sinica,
;2013, 29(01): 205-211.
doi:
10.3866/PKU.WHXB201210264
-
High-energy electrons play the most important role in the decomposition of ethanol aqueous solutions under glow discharge plasma electrolysis (GDE). The non-Faradaic currents greatly improve, resulting in the actual gas production yield exceeding the theoretical yield. In this paper, we investigated a novel process of hydrogen generation from ethanol decomposition by GDE. The main gaseous products were H2 and CO; in addition to small amounts of C2H4, CH4, O2, and C2H6. The H2 volume fraction was above 59% and CO was 20%. We conclude that voltages of points C and D (VC and VD) do not change with the electrolyte concentration, but the 'Kellogg area' becomes narrower with increasing electrolyte conductivity and the glow discharge is easier to attain. In addition, with increasing ethanol volume fraction, the H2 volume fraction decreases. The maximum gas production rate occurred for ethanol volume fractions of 30% and 80%. Improving the discharge voltage and raising the electrolyte conductivity had the same effect on glow discharge plasma electrolysis as the voltage load at both ends of the plasma steam sheath increases. The H2 volume fraction remains the same upon varying the discharge voltage or electrolyte conductivity, but increasing the electrolyte conductivity is advantageous to reduce Joule heating effects caused by GDE.
-
-
-
[1]
(1) Yan, Z. C.; Chen, L.;Wang, H. L. Acta Phys. -Chim. Sin. 2007,23, 835. [严宗诚, 陈砺, 王红林. 物理化学学报, 2007, 23,835.] doi: 10.3866/PKU.WHXB20070608
-
[2]
(2) Sengupta, S. K.; Singh, O. P. J. Electroanal. Chem. 1994, 369,113. doi: 10.1016/0022-0728(94)87089-6.
-
[3]
(3) Gao, J. Z.;Wang, X. Y.; Hu, Z. A.; Hou, J. G.; Lu, Q. F. Plasma Sci. Technol. 2001, 3, 765. doi: 10.1088/1009-0630/3/3/003
-
[4]
(4) Sengupta, S. K.; Singh, R.; Srivastva, A. K. J. Electrochem. Soc.1998, 145, 2209. doi: 10.1149/1.1838621
-
[5]
(5) Kuznetsova, N. I.; Kuznetsova, L. I.; Likholobov, V. A.; Pez, G.P. Catal. Today 2005, 99, 193. doi: 10.1016/j.cattod.2004.09.040
-
[6]
(6) Sengupta, S. K.; Sandhir, U.; Misra, N. J. Polym. Sci. Part A: Polym. Chem. 2001, 39, 1584. doi: 10.1002/pola.1134
-
[7]
(7) ng, J. Y.;Wang, J.; Xie,W. J.; Cai,W. M. J. Appl. Electrochem. 2008, 38, 1749. doi: 10.1007/s10800-008-9626-z
-
[8]
(8) Yang, H.; Matsumoto, Y.; Tezuka, M. J. Environ. Sci. 2009, 21 (Suppl. 1), 142. doi: 10.1016/S1001-0742(09)60059-0
-
[9]
(9) Campbell, S. A.; Cunnane, V. J.; Schiffrin, D. J. J. Eletroanal. Soc. 1992, 325, 257. doi: 10.1016/0022-0728(92)80117-M
-
[10]
(10) Pei, M. X.; Lin, H.; Shangguan,W. F.; Huang, Z. Acta Phys. -Chim. Sin. 2005, 21, 255. [裴梅香, 林赫, 上官文峰,黄震. 物理化学学报, 2005, 21, 255.] doi: 10.3866/PKU.WHXB20050306
-
[11]
(11) Yu, Q. Q.; Liu, T.;Wang, H.; Xiao, L. P.; Chen, M.; Jiang, X. Y.;Zheng, X. M. Chin. J. Catal. 2012, 33, 783. [于琴琴, 刘彤,王卉, 肖丽萍, 陈敏, 蒋晓原, 郑小明. 催化学报, 2012, 33,783.] doi: 10.1016/S1872-2067(11)60362-8
-
[12]
(12) Sengupta, S. K.; Rajeshwar, S.; Ashok, K. S. J. Electroanal. Chem. 1997, 427, 23. doi: 10.1016/S0022-0728(96)05044-9
-
[13]
(13) Hickling, A.; Ingram, M. D. Trans. Faraday Soc. 1964, 60, 783.doi: 10.1039/TF9646000783
-
[14]
(14) Mandin, P.; Aissa, A. A.; Roustan, H.; Hamburger, J.; Picard, G.Chem. Eng. Process. 2008, 47, 1926. doi: 10.1016/j.cep.2007.10.018
-
[15]
(15) Mandin, P.; Le Graverend, J. B.;Wuthrich, R.; Roustan, H.ECS Trans. 2009, 16, 49. doi: 10.1149/1.3104647
-
[16]
(16) Jin, X. L.;Wang, X. Y.; Zhang, H. M.; Xia, Q.;Wei, D. B.; Yue,J. J. Plasma Chem. Plasma Process. 2010, 30, 429. doi: 10.1007/s11090-010-9220-0
-
[17]
(17) Jin, X. L.;Wang, X. Y.; Yun, J. J.; Cai, Y. Q.; Zhang, H. Y.Electrochim. Acta 2010, 56, 925. doi: 10.1016/j.electactta.2010.09.079
-
[18]
(18) Yan, Z. C.; Chen, L.;Wang, H. L. J. Phys. D: Appl. Phys. 2008,41, 1. doi: 10.1088/0022-3727/41/15/155205
-
[19]
(19) Yan, Z. C.; Chen, L.;Wang, H. L. Int. J. Hydrog. Energy 2009,34, 48. doi: 10.1016/j.ijhydene.2008.09.099
-
[20]
(20) Shen, P. K.;Wang, S. L.; Hu, Z. Y.; Li, Y. L.; Zeng, R.; Huang,Y. Q. Acta Phys. -Chim. Sin. 2007, 23, 107. [沈培康, 汪圣龙,胡智怡, 李永亮, 曾蓉, 黄岳强. 物理化学学报, 2007, 23,107.] doi: 10.3866/PKU.WHXB20070122
-
[21]
(21) Zeng, K.; Zhang, D. K. Prog. Energy Combust. Sci. 2010, 36,307. doi: 10.1016/j.pecs. 2009.11.002
-
[22]
(22) Holladay, J. D.; Hu, J.; King, D. L.;Wang, Y. Catal. Today2009, 139, 244. doi: 10.1016/j.cattod.2008.08.039
-
[23]
(23) Wüthrich, R.; Mandin, P. Electrochim. Acta 2009, 54, 4031. doi: 10.1016/j.electacta. 2009.02.029
-
[24]
(24) Franklin, R. N. J. Phys. D: Appl. Phys. 2003, 36, 309. doi: 10.1088/0022-3727/36/22/R01
-
[25]
(25) Yan, Z. C. Hydrogen Generation by Glow Discharge PlasmaElectrolysis of Low Alcohol. Ph. D. Dissertation, South ChinaUniversity of Technology, Guangzhou, 2007. [严宗诚. 低碳醇溶液辉光放电电解及其制氢应用[D]. 广州: 华南理工大学,2007.]
-
[26]
(26) Luo, Y. R. Handbook of Bond Dissociation Energies in Organic Compounds; Science Press: Beijing, 2005; pp 56-195. [罗渝然. 化学键能数据手册. 北京: 科学出版社, 2005: 56-195.]
-
[1]
-
-
-
[1]
Jiandong Liu , Xin Li , Daxiong Wu , Huaping Wang , Junda Huang , Jianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, 2024, 40(6): 2306039-0. doi: 10.3866/PKU.WHXB202306039
-
[2]
Rui Yang , Hui Li , Qingfei Meng , Wenjie Li , Jiliang Wu , Yongjin Fang , Chi Huang , Yuliang Cao . Influence of PC-based Electrolyte on High-Rate Performance in Li/CrOx Primary Battery. Acta Physico-Chimica Sinica, 2024, 40(9): 2308053-0. doi: 10.3866/PKU.WHXB202308053
-
[3]
Yajie Li , Bin Chen , Yiping Wang , Hui Xing , Wei Zhao , Geng Zhang , Siqi Shi . Inhibiting Dendrite Growth by Customizing Electrolyte or Separator to Achieve Anisotropic Lithium-Ion Transport: A Phase-Field Study. Acta Physico-Chimica Sinica, 2024, 40(3): 2305053-0. doi: 10.3866/PKU.WHXB202305053
-
[4]
Xin Feng , Kexin Guo , Chunguang Jia , Bowen Liu , Suqin Ci , Junxiang Chen , Zhenhai Wen . Hydrogen Generation Coupling with High-Selectivity Electrocatalytic Glycerol Valorization into Formate in an Acid-Alkali Dual-Electrolyte Flow Electrolyzer. Acta Physico-Chimica Sinica, 2024, 40(5): 2303050-0. doi: 10.3866/PKU.WHXB202303050
-
[5]
Lele Feng , Xueying Bai , Jifeng Pang , Hongchen Cao , Xiaoyan Liu , Wenhao Luo , Xiaofeng Yang , Pengfei Wu , Mingyuan Zheng . Single-atom Pd boosted Cu catalysts for ethanol dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(9): 100100-0. doi: 10.1016/j.actphy.2025.100100
-
[6]
Tong Zhou , Liyi Xie , Chuyu Liu , Xiyan Zheng , Bao Li . Between Sobriety and Intoxication: The Fascinating Journey of Sauce-Flavored Latte. University Chemistry, 2024, 39(9): 55-58. doi: 10.12461/PKU.DXHX202312048
-
[7]
Siwei Lv , Tantian Tan , Xinyue Li , Siyan Zhang , Mingyuan Zhang , Minghao Li , Hangshuo Guo , Zhaorong Li , Liangjie Dong , Fengshuo Zhang , Junlong Zhao . Competition of the “King of Transboundary Medicine”. University Chemistry, 2024, 39(9): 102-108. doi: 10.12461/PKU.DXHX202403034
-
[8]
Yifan ZHAO , Qiyun MAO , Meijing GUO , Guoying ZHANG , Tongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001
-
[9]
Feiya Cao , Qixin Wang , Pu Li , Zhirong Xing , Ziyu Song , Heng Zhang , Zhibin Zhou , Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094
-
[10]
Hao Chen , Dongyue Yang , Gang Huang , Xinbo Zhang . Progress on Liquid Organic Electrolytes of Li-O2 Batteries. Acta Physico-Chimica Sinica, 2024, 40(7): 2305059-0. doi: 10.3866/PKU.WHXB202305059
-
[11]
Jiahe LIU , Gan TANG , Kai CHEN , Mingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023
-
[12]
Zhuo Han , Danfeng Zhang , Haixian Wang , Guorui Zheng , Ming Liu , Yanbing He . Research Progress and Prospect on Electrolyte Additives for Interface Reconstruction of Long-Life Ni-Rich Lithium Batteries. Acta Physico-Chimica Sinica, 2024, 40(9): 2307034-0. doi: 10.3866/PKU.WHXB202307034
-
[13]
Yu Peng , Jiawei Chen , Yue Yin , Yongjie Cao , Mochou Liao , Congxiao Wang , Xiaoli Dong , Yongyao Xia . Tailored cathode electrolyte interphase via ethylene carbonate-free electrolytes enabling stable and wide-temperature operation of high-voltage LiCoO2. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-0. doi: 10.1016/j.actphy.2025.100087
-
[14]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[15]
Xiting Zhou , Zhipeng Han , Xinlei Zhang , Shixuan Zhu , Cheng Che , Liang Xu , Zhenyu Sun , Leiduan Hao , Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070
-
[16]
Qianli Ma , Tianbing Song , Tianle He , Xirong Zhang , Huanming Xiong . Sulfur-doped carbon dots: a novel bifunctional electrolyte additive for high-performance aqueous zinc-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100106-0. doi: 10.1016/j.actphy.2025.100106
-
[17]
Aoyu Huang , Jun Xu , Yu Huang , Gui Chu , Mao Wang , Lili Wang , Yongqi Sun , Zhen Jiang , Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2408007-0. doi: 10.3866/PKU.WHXB202408007
-
[18]
Yiping HUANG , Liqin TANG , Yufan JI , Cheng CHEN , Shuangtao LI , Jingjing HUANG , Xuechao GAO , Xuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224
-
[19]
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
-
[20]
Mingjie Lei , Wenting Hu , Kexin Lin , Xiujuan Sun , Haoshen Zhang , Ye Qian , Tongyue Kang , Xiulin Wu , Hailong Liao , Yuan Pan , Yuwei Zhang , Diye Wei , Ping Gao . Accelerating the reconstruction of NiSe2 by Co/Mn/Mo doping for enhanced urea electrolysis. Acta Physico-Chimica Sinica, 2025, 41(8): 100083-0. doi: 10.1016/j.actphy.2025.100083
-
[1]
Metrics
- PDF Downloads(931)
- Abstract views(2662)
- HTML views(17)