Citation:
GE Song, CHEN Min. Effects of Surface Charge and Electric Field on the Interfacial Thermal Resistance at Liquid/Solid Interfaces[J]. Acta Physico-Chimica Sinica
doi:
10.3866/PKU.WHXB201209042
-
Effects of electric field and surface charge on the interfacial thermal resistance between water and solid are discussed by using nonequilibrium molecular dynamics simulation. The results reveal that the electric filed decreases the water-solid interfacial thermal resistance when it is perpendicular to the interface. However, it shows negligible effects on the thermal resistance when parallel to the interface. Both positively and negatively charged surfaces decrease the interfacial thermal resistance. The relation between the interfacial thermal resistance and the surface charge density or electric field strength follows the quadratic function. The study demonstrates that applying external electric field or surface charge is an effective method to manipulate the interfacial thermal resistance.
-
-
-
[1]
(1) Swartz, E. T.; Pohl, R. O. Rev. Mod. Phys. 1989, 61, 605. doi: 10.1103/RevModPhys.61.605
-
[2]
(2) Cahill, D. G.; Ford,W. K.; odson, K. E.; Mahan G. D.;Majumdar, A.; Maris, H. J.; Merlin, R.; Phillpot, S. R. J. Appl. Phys. 2003, 93, 793. doi: 10.1063/1.1524305
-
[3]
(3) Barrat, J. L.; Chiaruttini, F. Mol. Phys. 2003, 101, 1605. doi: 10.1080/0026897031000068578
-
[4]
(4) Ge, Z. B.; Cahill, D. G.; Braun, V. Phys. Rev. Lett. 2006, 96,186101. doi: 10.1103/PhysRevLett.96.186101
-
[5]
(5) Xue, L.; Keblinski, P.; Phillipot, S. R.; Choi, S. U. S.; Eastman,J. A. J. Chem. Phys. 2003, 118, 337. doi: 10.1063/1.1525806
-
[6]
(6) Zhu, S. H.; Yan, L. M.; Ji, X. B.; Shao, C. L.; Lu,W. C. Acta Phys. -Chim. Sin. 2010, 26, 2659. [朱素华, 严六明, 纪晓波,邵长乐, 陆文聪. 物理化学学报, 2010, 26, 2659.] doi: 10.3866/PKU.WHXB20100934
-
[7]
(7) Li, H. L.; Jia, Y. X.; Hu, Y. D. Acta Phys. -Chim. Sin. 2012, 28,573. [李海兰, 贾玉香, 胡仰栋. 物理化学学报, 2012, 28,573.] doi: 10.3866/PKU.WHXB201112191
-
[8]
(8) Li, Q. L.; Chen, L. X. Prog. Chem. 2008, 20, 1406. [李清岭,陈令新. 化学进展, 2008, 20, 1406.]
-
[9]
(9) Powell, M. R.; Cleary, L.; Davenport, M.; Shea, K. J.; Siwy, Z.S. Nat. Nanotech. 2011, 6, 798. doi: 10.1038/nnano.2011.189
-
[10]
(10) Mugele, F.; Baret, J. C. J. Phys.: Condes. Matter 2005, 17, R705.
-
[11]
(11) Hayes, R. A.; Feenstra, B. J. Nature 2003, 425, 383. doi: 10.1038/nature01988
-
[12]
(12) Bhushan, B.; Pan, Y. Langmuir 2011, 27, 9425.
-
[13]
(13) Wang, Y. L.; Bhushan, B. Langmuir 2010, 26, 4013. doi: 10.1021/la903460a
-
[14]
(14) Evans,W.; Fish, J.; Keblinski, P. J. Chem. Phys. 2007, 126,154504. doi: 10.1063/1.2723071
-
[15]
(15) Xu, G. L.; Xiao, X. H.; Liu, Y. F.; Sun, J. F.; Zhu, Z. H. Acta Phys. -Chim. Sin. 2007, 23, 746. [徐国亮, 肖小红, 刘玉芳,孙金锋, 朱正和. 物理化学学报, 2007, 23, 746.] doi: 10.3866/PKU.WHXB20070524
-
[16]
(16) Lee, D.; Kim, J.W.; Kim, B. G. J. Phys. Chem. B 2006, 110,4323. doi: 10.1021/jp057225m
-
[17]
(17) Plimpton, S. J. Comp. Phys. 1995, 117, 1. doi: 10.1006/jcph.1995.1039
-
[18]
(18) Ge, S.; Zhang, X. X.; Chen, M. J. Chem. Eng. Data 2011, 56,1299. doi: 10.1021/je101138g
-
[19]
(19) Ge, S.; Zhang, X. X.; Chen, M. Int. J. Thermophys. 2010, 31,2176. doi: 10.1007/s10765-010-0863-0
-
[20]
(20) Agrawal, P. M.; Rice, B. M.; Thompson, D. L. Surf. Sci. 2002,515, 21. doi: 10.1016/S0039-6028(02)01916-7
-
[21]
(21) Chen, G. Nanoscale Energy Transport and Conversion; OxfordUniversity Press: New York, 2005; pp 85-86.
-
[22]
(22) Deserno, M.; Holm, C. J. Chem. Phys. 1998, 109 (18), 7678.doi: 10.1063/1.477414
-
[23]
(23) Ryckaert, J. P.; Ciccotti, G.; Berendsen, H. J. C. J. Comp. Phys.1977, 23, 327.
-
[24]
(24) Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids;Clarendon Press: Oxford, 1997; pp 87-89.
-
[25]
(25) Evans, D. J.; Holian, B. L. J. Chem. Phys. 1985, 83 (8), 4069.doi: 10.1063/1.449071
-
[26]
(26) Jund, P.; Jullien, R. Phys. Rev. B 1999, 59 (21), 13707. doi: 10.1103/PhysRevB.59.13707
-
[27]
(27) Frenkel, D.; Smit, B. Understanding Molecular Simulation: From Al rithms to Application; Academic Press: New York,1996; pp 529-532.
-
[28]
(28) Hu, M.; icochea, J. V.; Michel, B.; Poulikakos, D. Appl. Phys. Lett. 2009, 95, 151903. doi: 10.1063/1.3247882
-
[29]
(29) Ge, Z. B.; Cahill, D. G.; Braun, P. V. J. Phys. Chem. B 2004,108, 18870. doi: 10.1021/jp048375k
-
[30]
(30) Shenogina, N.; dawat, R.; Keblinski, P.; Garde, S. Phys. Rev. Lett. 2009, 102, 156101. doi: 10.1103/PhysRevLett.102.156101
-
[1]
-
-
-
[1]
Congying Lu , Fei Zhong , Zhenyu Yuan , Shuaibing Li , Jiayao Li , Jiewen Liu , Xianyang Hu , Liqun Sun , Rui Li , Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, doi: 10.3866/PKU.DXHX202308097
-
[2]
Zhi Zhou , Yu-E Lian , Yuqing Li , Hui Gao , Wei Yi . New Insights into the Molecular Mechanism Behind Clinical Tragedies of “Cephalosporin with Alcohol”. University Chemistry, doi: 10.12461/PKU.DXHX202403104
-
[3]
Chongjing Liu , Yujian Xia , Pengjun Zhang , Shiqiang Wei , Dengfeng Cao , Beibei Sheng , Yongheng Chu , Shuangming Chen , Li Song , Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202309036
-
[4]
Chunai Dai , Yongsheng Han , Luting Yan , Zhen Li , Yingze Cao . Ideological and Political Design of Solid-liquid Contact Angle Measurement Experiment. University Chemistry, doi: 10.3866/PKU.DXHX202306065
-
[5]
Yuhui Yang , Jintian Luo , Biao Zuo . A Teaching Approach to Polymer Surface and Interface in Undergraduate Polymer Physics Courses. University Chemistry, doi: 10.12461/PKU.DXHX202408056
-
[6]
Da Wang , Xiaobin Yin , Jianfang Wu , Yaqiao Luo , Siqi Shi . All-Solid-State Lithium Cathode/Electrolyte Interfacial Resistance: From Space-Charge Layer Model to Characterization and Simulation. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202307029
-
[7]
Jiajie Cai , Chang Cheng , Bowen Liu , Jianjun Zhang , Chuanjia Jiang , Bei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, doi: 10.1016/j.actphy.2025.100084
-
[8]
Zhenming Xu , Yibo Wang , Zhenhui Liu , Duo Chen , Mingbo Zheng , Laifa Shen . Experimental Design of Computational Materials Science and Computational Chemistry Courses Based on the Bohrium Scientific Computing Cloud Platform. University Chemistry, doi: 10.12461/PKU.DXHX202403096
-
[9]
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, doi: 10.3866/PKU.DXHX202310029
-
[10]
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . Efficient Photocatalytic Production of H2O2 over ZnO/D-A Conjugated Polymer S-scheme Heterojunction and Charge Transfer Dynamics Investigation. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202406027
-
[11]
Xinlong WANG , Zhenguo CHENG , Guo WANG , Xiaokuen ZHANG , Yong XIANG , Xinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20230259
-
[12]
Fanpeng Meng , Fei Zhao , Jingkai Lin , Jinsheng Zhao , Huayang Zhang , Shaobin Wang . Optimizing interfacial electric fields in carbon nitride nanosheet/spherical conjugated polymer S-scheme heterojunction for hydrogen evolution. Acta Physico-Chimica Sinica, doi: 10.1016/j.actphy.2025.100095
-
[13]
Jiandong Liu , Xin Li , Daxiong Wu , Huaping Wang , Junda Huang , Jianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202306039
-
[14]
Zhuo Han , Danfeng Zhang , Haixian Wang , Guorui Zheng , Ming Liu , Yanbing He . Research Progress and Prospect on Electrolyte Additives for Interface Reconstruction of Long-Life Ni-Rich Lithium Batteries. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202307034
-
[15]
Shanghua Li , Malin Li , Xiwen Chi , Xin Yin , Zhaodi Luo , Jihong Yu . High-Stable Aqueous Zinc Metal Anodes Enabled by an Oriented ZnQ Zeolite Protective Layer with Facile Ion Migration Kinetics. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202309003
-
[16]
Yu Peng , Jiawei Chen , Yue Yin , Yongjie Cao , Mochou Liao , Congxiao Wang , Xiaoli Dong , Yongyao Xia . Tailored cathode electrolyte interphase via ethylene carbonate-free electrolytes enabling stable and wide-temperature operation of high-voltage LiCoO2. Acta Physico-Chimica Sinica, doi: 10.1016/j.actphy.2025.100087
-
[17]
Aoyu Huang , Jun Xu , Yu Huang , Gui Chu , Mao Wang , Lili Wang , Yongqi Sun , Zhen Jiang , Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202408007
-
[18]
Yanhui Sun , Junmin Nan , Guozheng Ma , Xiaoxi Zuo , Guoliang Li , Xiaoming Lin . Exploration and Teaching Practice of Ideological and Political Elements in Interface Physical Chemistry: Taking “Additional Pressure on Curved Surfaces” as an Teaching Example. University Chemistry, doi: 10.3866/PKU.DXHX202402023
-
[19]
Peng Li , Yuanying Cui , Zhongliao Wang , Graham Dawson , Chunfeng Shao , Kai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, doi: 10.1016/j.actphy.2025.100065
-
[20]
Weikang Wang , Yadong Wu , Jianjun Zhang , Kai Meng , Jinhe Li , Lele Wang , Qinqin Liu . Green H2O2 synthesis via melamine-foam supported S-scheme Cd0.5Zn0.5In2S4/S-doped carbon nitride heterojunction: synergistic interfacial charge transfer and local photothermal effect. Acta Physico-Chimica Sinica, doi: 10.1016/j.actphy.2025.100093
-
[1]
Metrics
- PDF Downloads(831)
- Abstract views(1960)
- HTML views(1)