Citation:
WANG Xiu-Jun, LONG Mi. Statistical Correction of Heat of Formation Calculated by the O3LYP Method[J]. Acta Physico-Chimica Sinica
doi:
10.3866/PKU.WHXB201207172
-
The results of density functional theory calculations are known to contain inherent numerical errors caused by various intrinsic approximations. In this paper, O3LYP/6-311+G(3df,2p)//O3LYP/6-31G(d) calculations were used to derive the heats of formation (ΔfHcalcΘ) of 220 small to medium-sized organic molecules, followed by the application of artificial neural network (ANN) and multiple linear regression (MLR) analyses to correct the values. The physical descriptors chosen were ΔfHcalcΘ and zero point energy as well as the total quantities of atoms, hydrogen atoms, 2-center bonds, 2-center antibonds, 1-center valence lone pairs and 1-center core pairs. The ANN and MLR systems were initially constructed using a 180 training set. The trained ANN and MLR systems were subsequently used to predict values of ΔfHcalcΘ for a 40 individual testing set. The results demonstrated that the root mean square (RMS) deviations between the calculated and experimental ΔfHΘ values in the training set were reduced from 24.7 to 11.8 and 13.0 kJ·mol-1 after ANN and MLR corrections, respectively. For the individual testing set, the deviations (RMSD) were reduced from 21.3 to 10.4 and 12.1 kJ·mol-1, respectively. Based on these results, it can be concluded that ANN exhibits superior fitting and predictive abilities compared with MLR.
-
-
-
[1]
(1) Pedley, J. B.; Naylor, R. D.; Kirby, S. P. Thermochemical Data of Organic Compounds; Chapman and Hall: New York, 1986.
-
[2]
(2) Yaws, C. L. Chemical Properties Handbook; McGraw-Hill:New York, 1999.
-
[3]
(3) Lide, D. R. CRC Handbook of Chemistry and Physics, 3rd.electronic ed.; BocaRaton: FL, 2000.
-
[4]
(4) Wu, J.; Xu, X. J. Chem. Phys. 2007, 127, 214105. doi: 10.1063/1.2800018
-
[5]
(5) Curtiss, L. A.; Raghavachari, K.; Redfern, P. C.; Pople, J. A.Chem. Phys. Lett. 1997, 270, 419. doi: 10.1016/S0009-2614(97)00399-0
-
[6]
(6) Schmitz, L. R.; Chen, K. H.; Labanowski, J.; Allinger, N. L.J. Phys. Org. Chem. 2001, 14, 90. doi: 10.1002/1099-1395(200102)14:2<90::AID-POC330>3.0.CO;2-O
-
[7]
(7) Curtiss, L. A.; Raghavachari, K.; Trucks, G.W.; Pople, J. A.J. Chem. Phys. 1991, 94, 7221. doi: 10.1063/1.460205
-
[8]
(8) Lado-Tourino, I.; Tsobnang, F. Comp. Mater. Sci. 1998, 11, 181.doi: 10.1016/S0927-0256(98)80004-9
-
[9]
(9) Curtiss, L. A.; Raghavachari, K.; Redfern, P. C.; Pople, J. A.J. Chem. Phys. 2000, 112, 7374. doi: 10.1063/1.481336
-
[10]
(10) Wodrich, M. D.; Corminboeuf, C.; Schleyer, P. v. R. Org. Lett.2006, 8, 3631. doi: 10.1021/ol061016i
-
[11]
(11) Check, C. E.; Gilbert, T. M. J. Org. Chem. 2005, 70, 9828. doi: 10.1021/jo051545k
-
[12]
(12) Iz rodina, E. I.; Coote, M. L.; Radom, L. J. Phys. Chem. A2005, 109, 7558. doi: 10.1021/jp052021r
-
[13]
(13) Schreiner, P. R.; Fokin, A. A.; Pascal, R. A., Jr.; de Meijere, A.Org. Lett. 2006, 8, 3635. doi: 10.1021/ol0610486
-
[14]
(14) Zhao, Y.; nzalez-Garcia, N.; Truhlar, D. G. J. Phys. Chem. A2005, 109, 2012. doi: 10.1021/jp045141s
-
[15]
(15) Zhang, I. Y.; Luo, Y.; Xu, X. J. Chem. Phys. 2010, 132, 194105.doi: 10.1063/1.3424845
-
[16]
(16) Cohen, A. J.; Handy, N. C. Mol. Phys. 2001, 99, 607. doi: 10.1080/00268970010023435
-
[17]
(17) Yang, K.; Peverati, R.; Truhlar, D. G.; Valero, R. J. Chem. Phys.2011, 135, 044118. doi: 10.1063/1.3607312
-
[18]
(18) Heerdt, G.; Mor n, N. H. Quimica Nova 2011, 34, 868. doi: 10.1590/S0100-40422011000500024
-
[19]
(19) Bochevarov, A. D.; Friesner, R. A.; Lippard, S. J. J. Chem. Theory Comput. 2010, 6, 3735. doi: 10.1021/ct100398m
-
[20]
(20) Dobado, J. A.; mez-Tamayo, J. C.; Calvo-Flores, F. G.;Martinez-Garcia, H.; Cardona,W.;Weiss-Lopez, B.; Ramirez-Rodriguez, O.; Pessoa-Mahana, H.; Araya-Maturana, R. Magn. Reson. Chem. 2011, 49, 358. doi: 10.1002/mrc.2745
-
[21]
(21) Qian, Z. S.; Feng, H.; He, L. N.; Yang,W. J.; Bi, S. P. J. Phys. Chem. A 2009, 113, 5138. doi: 10.1021/jp810632f
-
[22]
(22) Strassner, T.; Taige, M. A. J. Chem. Theory Comput. 2005, 1,848. doi: 10.1021/ct049846+
-
[23]
(23) Baker, J.; Pulay, P. J. Comput. Chem. 2003, 24, 1184. doi: 10.1002/jcc.10280
-
[24]
(24) Curtiss, L. A.; Jones, C.; Trucks, G.W.; Raghavachari, K.;Pople, J. A. J. Chem. Phys. 1990, 93, 2537. doi: 10.1063/1.458892
-
[25]
(25) Curtiss, L. A.; Raghavachari, K.; Redfern, P. C.; Pople, J. A.J. Chem. Phys. 1997, 106, 1063. doi: 10.1063/1.473182
-
[26]
(26) Curtiss, L. A.; Raghavachari, K.; Redfern, P. C.; Rassolov, V.;Pople, J. A. J. Chem. Phys. 1998, 109, 7764. doi: 10.1063/1.477422
-
[27]
(27) Curtiss, L. A.; Raghavachari, K.; Redfern, P. C.; Pople, J. A.J. Chem. Phys. 2000, 112, 7374. doi: 10.1063/1.481336
-
[28]
(28) Curtiss, L. A.; Redfern, P. C.; Raghavachari, K. Chem. Phys. Lett. 2010, 499, 168. doi: 10.1016/j.cplett.2010.09.012
-
[29]
(29) Dorofeeva, O. V.; Kolesnikova, I. N.; Marochkin, I. I.; Ryzhova,O. N. J. Struct. Chem. 2011, 22, 1303. doi: 10.1007/s11224-011-9827-7
-
[30]
(30) Hu, L. H.;Wang, X. J.;Wong, L. H.; Chen, G. H. J. Chem. Phys. 2003, 119, 11501. doi: 10.1063/1.1630951
-
[31]
(31) Wang, X. J.;Wong, L. H.; Hu, L. H.; Chan, C. Y.; Su, Z. M.;Chen, G. H. J. Phys. Chem. A 2004, 108, 8514. doi: 10.1021/jp047263q
-
[32]
(32) Duan, X. M.; Li, Z. H.; Song, G. L.;Wang,W. N.; Chen, G. H.;Fan, K. N. Chem. Phys. Lett. 2005, 410, 125. doi: 10.1016/j.cplett.2005.05.046
-
[33]
(33) Duan, X. M.; Song, G. L.; Li, Z. H.;Wang, X. J.; Chen, G. H.;Fan, K. N. J. Chem. Phys. 2004, 121, 7086. doi: 10.1063/1.1786582
-
[34]
(34) Yan, G. K.; Li, J. J.; Li, B. R.; Hu, J.; Guo,W. P. J. Theor. Comput. Chem. 2007, 6, 495. doi: 10.1142/S0219633607003118
-
[35]
(35) Zheng, X.; Hu, L.;Wang, X.; Chen, G. Chem. Phys. Lett. 2004,390, 186. doi: 10.1016/j.cplett.2004.04.020
-
[36]
(36) Zhang, J. H.;Wang, X. J. Acta Phys. -Chim. Sin. 2010, 26,188. [张家虎, 王秀军. 物理化学学报, 2010, 26, 188.]doi: 10.3866/PKU.WHXB20100116
-
[37]
(37) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 09,Revision B.01; Gaussian Inc.:Wallingford, CT, 2010.
-
[38]
(38) Zheng,W. F.; Tropsha, A. J. Chem. Inf. Comput. Sci. 2000, 40,185. doi: 10.1021/ci980033m
-
[39]
(39) Cramer, R. D., III; Patterson, D. E.; Bunce, J. D. J. Am. Chem. Soc. 1988, 110, 5959. doi: 10.1021/ja00226a005
-
[40]
(40) lbraikh, A.; Tropsha, A. J. Chem. Inf. Comput. Sci. 2003, 43,144. doi: 10.1021/ci025516b
-
[1]
-
-
-
[1]
Haolin Zhan , Qiyuan Fang , Jiawei Liu , Xiaoqi Shi , Xinyu Chen , Yuqing Huang , Zhong Chen . Noise Reduction of Nuclear Magnetic Resonance Spectroscopy Using Lightweight Deep Neural Network. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202310045
-
[2]
Yadan Luo , Hao Zheng , Xin Li , Fengmin Li , Hua Tang , Xilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, doi: 10.1016/j.actphy.2025.100052
-
[3]
Tong Zhou , Xue Liu , Liang Zhao , Mingtao Qiao , Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(Ⅵ) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202309020
-
[4]
Yu Wang , Haiyang Shi , Zihan Chen , Feng Chen , Ping Wang , Xuefei Wang . 具有富电子Ptδ−壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, doi: 10.1016/j.actphy.2025.100081
-
[5]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240067
-
[6]
Yang Lv , Yingping Jia , Yanhua Li , Hexiang Zhong , Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, doi: 10.12461/PKU.DXHX202402059
-
[7]
Yang ZHOU , Lili YAN , Wenjuan ZHANG , Pinhua RAO . Thermal regeneration of biogas residue biochar and the ammonia nitrogen adsorption properties. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20250032
-
[8]
Weigang Zhu , Yun Tian , Zhicheng Zhang , Hongling Gao . Reform Exploration of Student Performance Assessment in Inorganic Chemistry Experimental Courses. University Chemistry, doi: 10.12461/PKU.DXHX202404114
-
[9]
Limei CHEN , Mengfei ZHAO , Lin CHEN , Ding LI , Wei LI , Weiye HAN , Hongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20230312
-
[10]
Yuting Bai , Cenqi Yan , Zhen Li , Jiaqiang Qin , Pei Cheng . Preparation of High-Strength Polyimide Porous Films with Thermally Closed Pore Property by In Situ Pore Formation Method. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202306010
-
[11]
Yongqing Xu , Yuyao Yang , Mengna Wu , Xiaoxiao Yang , Xuan Bie , Shiyu Zhang , Qinghai Li , Yanguo Zhang , Chenwei Zhang , Robert E. Przekop , Bogna Sztorch , Dariusz Brzakalski , Hui Zhou . Review on Using Molybdenum Carbides for the Thermal Catalysis of CO2 Hydrogenation to Produce High-Value-Added Chemicals and Fuels. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202304003
-
[12]
Juan Guo , Mingyuan Fang , Qingsong Liu , Xiao Ren , Yongqiang Qiao , Mingju Chao , Erjun Liang , Qilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, doi: 10.1016/j.cclet.2023.108957
-
[13]
Zhiwen HUANG , Qi LIU , Jianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240184
-
[14]
Jiageng Li , Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, doi: 10.12461/PKU.DXHX202407098
-
[15]
Zhenyu Feng , Zhaozhen Cao , Jinhua Zhan . Exploration of Online Training System for Large-Scale Instrument in Open Laboratory of Universities. University Chemistry, doi: 10.3866/PKU.DXHX202311016
-
[16]
Xu Liu , Chengfang Liu , Jie Huang , Xiangchun Li , Wenyong Lai . Research on the Application of Diversified Teaching Models in the Teaching of Physical Chemistry. University Chemistry, doi: 10.3866/PKU.DXHX202402021
-
[17]
Yahui HAN , Jinjin ZHAO , Ning REN , Jianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240395
-
[18]
Shiyi WANG , Chaolong CHEN , Xiangjian KONG , Lansun ZHENG , Lasheng LONG . Polynuclear lanthanide compound [Ce4ⅢCe6Ⅳ(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240342
-
[19]
Renshu Huang , Jinli Chen , Xingfa Chen , Tianqi Yu , Huyi Yu , Kaien Li , Bin Li , Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, doi: 10.1016/j.cjsc.2023.100171
-
[20]
Jian He , Dinglin Zhang , Liping Wu , Ying Bao , Xiaochao Yang . 知识网络构建策略在有机化学教学中的应用及效果分析. University Chemistry, doi: 10.12461/PKU.DXHX202410092
-
[1]
Metrics
- PDF Downloads(643)
- Abstract views(2178)
- HTML views(88)