Citation: ZHAO Peng-Jun, WU Rong, HOU Juan, CHANG Ai-min, GUAN Fang, ZHANG Bo. One-Step Hydrothermal Synthesis and Visible-Light Photocatalytic Activity of Ultrafine Cu-Nanodot-Modified TiO2 Nanotubes[J]. Acta Physico-Chimica Sinica, ;2012, 28(08): 1971-1977. doi: 10.3866/PKU.WHXB201206111 shu

One-Step Hydrothermal Synthesis and Visible-Light Photocatalytic Activity of Ultrafine Cu-Nanodot-Modified TiO2 Nanotubes

  • Received Date: 28 March 2012
    Available Online: 11 June 2012

    Fund Project: 联合学者项目(LHXZ200902) (LHXZ200902) 中国博士后科研基金项目(20100471679, 201104704)资助 (20100471679, 201104704)

  • One dimensional titanate nanotubes modified with copper nanospheres were synthesized through a facile one-step hydrothermal process. Transmission electron microscope (TEM), X-ray diffraction (XRD), and energy dispersive spectrometry (EDS) were used to monitor the changes in the morphology and phases during the hydrothermal process. The diameter of the Cu-TiO2 composite nanotubes was 10-15 nm and their lengths were ca 100 nm, the dimension of the covered Cu nanoparticles was about 5 nm. Brunauer-Emmett-Teller (BET) tests revealed the specific surface area of the Cu-TiO2 composite nanotubes to be 154.67 m2·g-1. The formation process and mechanism of the composite nanotubes were surveyed by adjusting the hydrothermal duration and titanium precursor. The results revealed that an amorphous titanium precursor is essential for the successful formation of this unique topography and phase composition. Anti-Ostwald ripening, a decrease in the dimensions of the copper nanospheres with hydrothermal time, was observed in the TEM images, which is of benefit to helps keep the particles on the nanoscale. The UV-Vis spectrum of the as-prepared material exhibits a strong absorption at 350-800 nm in the visible band compared with commercial TiO2 nanopowders. The plasmonic absorption of metallic copper particles between 550 and 600 nm is seen in the UV-Vis spectrum. Schottky barriers between copper-TiO2 interfaces make this kind of material a potential agent in speeding up electron transport rates and slowing recombination rates. Photocatalytic experiments demonstrated this unique Cu-TiO2 composite nanotube material has a high photocatalytic activity under visible-light irradiation.

  • 加载中
    1. [1]

      (1) Yella, A.; Lee, H.W.; Tsao, H. N.; Yi, C.; Chandiran, A. K.;Nazeeruddin, M. K.; Diau, E.W.; Yeh, C. Y.; Zakeeruddin, S.M.; Grätzel, M. Science 2011, 334, 629. doi: 10.1126/science.1209688

    2. [2]

      (2) Xu, P. C.; Liu, Y.;Wei, J. H.; Xiong, R.; Pan, C. X.; Shi, J. Acta Phys. -Chim. Sin. 2010, 26, 2261. [许平昌, 柳阳, 魏建红,熊锐, 潘春旭, 石兢. 物理化学学报, 2010, 26, 2261.] doi: 10.3866/PKU.WHXB20100815

    3. [3]

      (3) Zhang,W.; Zou, L.;Wang, L. Appl. Catal. A 2009, 371, 1.doi: 10.1016/j.apcata.2009.09.038

    4. [4]

      (4) Chen, J. S.; Tan, Y. L.; Li, C. M.; Cheah, Y. L.; Luan, D.;Madhavi, S.; Boey, F. Y. C.; Archer, L. A.; Lou, X.W. J. Am. Chem. Soc. 2010, 132, 6124. doi: 10.1021/ja100102y

    5. [5]

      (5) Li, N.; Liu, G.; Zhen, C.; Li, F.; Zhang, L.; Chen, H. M. Adv. Funct. Mater. 2011, 21, 1717. doi: 10.1002/adfm.201002295

    6. [6]

      (6) Wang, N.; Han, L.; He, H.; Park, N. H.; Koumoto, K. Energy Environ. Sci. 2011, 4, 3676. doi: 10.1039/c1ee01646f

    7. [7]

      (7) Attar, A. S.; Ghamsari, M. S.; Hajiesmaeilbaigi, F.; Mirdamadi,S.; Katagiri, K.; Koumoto, K. Mater. Chem. Phys. 2009, 113,856. doi: 10.1016/j.matchemphys.2008.08.040

    8. [8]

      (8) Wang, D.; Yu, B.;Wang, C.; Zhou, F.; Liu,W. Adv. Mater. 2009,21, 1964. doi: 10.1002/adma.200801996

    9. [9]

      (9) Dai, L.; Sow, C. H.; Lim, C. T.; Cheong,W. C. D.; Tan, V. B. C.Nano Lett. 2009, 9, 576. doi: 10.1021/nl8027284

    10. [10]

      (10) Lekeufack, D. D.; Brioude, A.; Mouti, A.; Alauzun, J. G.;Stadelmann, P.; Coleman, A.W.; Miele, P. Chem. Commun.2010, 46, 4544. doi: 10.1039/c0cc00935k

    11. [11]

      (11) Yuan, J.;Wang, Y.; Chen, Y.; Yang,W.; Yao, J.; Cao, Y. Appl. Surf. Sci. 2011, 257, 7335. doi: 10.1016/j.apsusc.2011.03.139

    12. [12]

      (12) Sathish, M.; Viswanathan, B.; Viswanath, R. P.; pinath, C. S.Chem. Mater. 2005, 17, 6349. doi: 10.1021/cm052047v

    13. [13]

      (13) Liu, G.;Wang, X.; Chen, Z.; Cheng, H. M.; Lu, G. Q. J. Colloid Interface Sci. 2009, 329, 331. doi: 10.1016/j.jcis.2008.09.061

    14. [14]

      (14) Xu, L.; Tang, C. Q.; Huang, Z. B. Acta Phys. -Chim. Sin. 2010,26, 1401. [徐凌, 唐超群, 黄宗斌. 物理化学学报, 2010,26, 1401.] doi: 10.3866/PKU.WHXB20100526

    15. [15]

      (15) Gao, X.; Zhu, H.; Pan, G.; Ye, S.; Lan, Y.;Wu, F.; Song, D.J. Phys. Chem. B 2004, 108, 2868. doi: 10.1021/jp036821i

    16. [16]

      (16) Lei, B. X.; Liao, J. Y.; Zhang, R.;Wang, J.; Su, C. Y.; Kuang, D.B. J. Phys. Chem. C 2010, 114, 15228.

    17. [17]

      (17) Zhu, K.; Vinzant, T. B.; Neale, N. R.; Frank, A. J. Nano Lett.2007, 7, 3739. doi: 10.1021/nl072145a

    18. [18]

      (18) Huang, B.; Yang, Y.; Chen, X.; Ye, D. Catal. Commun. 2010, 11,844. doi: 10.1016/j.catcom.2010.03.006

    19. [19]

      (19) Viana, B. C.; Ferreira, O. P.; Filho, A. G. S.; Rodrigues, C. M.;Moraes, S. G.; Filho, J. M.; Alves, O. L. J. Phys. Chem. C 2009,113, 20234. doi: 10.1021/jp9068043

    20. [20]

      (20) Chu, S.; Zheng, X.; Kong, F.;Wu, G.; Luo, L.; Guo, Y.; Liu, H.;Wang, Y.; Yu, H.; Zou, Z.; Liu, Z. Mater. Chem. Phys. 2011,129, 1184. doi: 10.1016/j.matchemphys.2011.06.004

    21. [21]

      (21) Zhao, G., Lei, Y.; Zhang, Y.; Li, H.; Liu, M. J. Phys. Chem. C2008, 112, 14786. doi: 10.1021/jp712054c

    22. [22]

      (22) Chien, S.; Liou, Y. C.; Kuo, M. C. Synthetic Metals 2005, 152,333. doi: 10.1016/j.synthmet.2005.07.254

    23. [23]

      (23) Wang, C.; Yin, L.; Zhang, L.; Liu, N.; Lun, N.; Qi, Y. ACS Appl. Mater. Interfaces 2010, 2, 3373. doi: 10.1021/am100834x

    24. [24]

      (24) Macak, J. M.; Schmidt-Stein, F.; Schmuki, P. Electrochem. Commun. 2007, 9, 1783. doi: 10.1016/j.elecom.2007.04.002

    25. [25]

      (25) Zeng, H.; Cai,W.; Liu, P.; Xu, X.; Zhou, H.; Klingshirn, C.;Kalt, H. ACS Nano 2008, 2, 1661. doi: 10.1021/nn800353q

    26. [26]

      (26) Kumar, V.; Adamson, D. H.; Prudhomme, R. K. Small 2010, 6,2907. doi: 10.1002/smll.201001199

    27. [27]

      (27) Jia,W.; Douglas, E. P. J. Mater. Chem. 2004, 14, 744. doi: 10.1039/b311917c

    28. [28]

      (28) Nakahira, A.; Kubo, T.; Numako, C. Inorg. Chem. 2010, 49,5845. doi: 10.1021/ic9025816

    29. [29]

      (29) Huang, J.; Cao, Y.; Huang, Q.; He, H.; Liu, Y.; Guo,W.; Hong,M. Cryst. Growth Des. 2009, 9, 3632. doi: 10.1021/cg900381h

    30. [30]

      (30) Yao, B. D.; Chan, Y. F.; Zhang, X. Y.; Zhang,W. F.; Yang, Z. Y.;Wang, N. Appl. Phys. Lett. 2003, 82, 281. doi: 10.1063/1.1537518

    31. [31]

      (31) Kochkar, H.; Lakhdhar, N.; Berhault, G.; Bausach, M.; Ghorbel,A. J. Phys. Chem. C 2009, 113, 1672. doi: 10.1021/jp809131z

    32. [32]

      (32) Xu, S.; Ng, J.; Zhang, X.; Bai, H.; Sun, D. D. Int. J. Hydrog. Energy 2010, 35, 5254. doi: 10.1016/j.ijhydene.2010.02.129

    33. [33]

      (33) Boccuzzi, F.; Coluccia, S.; Martra, G.; Ravasio, N. J. Catal.1999, 184, 316. doi: 10.1006/jcat.1999.2428

    34. [34]

      (34) Balogh, L.; Tomalia, D. A. J. Am. Chem. Soc. 1998, 120, 7355.doi: 10.1021/ja980861w

    35. [35]

      (35) Doremus, R. H.; Rao, P. J. Mater. Res. 1996, 11, 2384.

    36. [36]

      (36) Pestryakov, A. N.; Petranovskii, V. P.; Kryazho, A.; Ozhereliev,O.; Pfcander, N.; Knop-Gericke, A. Chem. Phys. Lett. 2004,385, 173. doi: 10.1016/j.cplett.2003.12.077


  • 加载中
    1. [1]

      Xudong LvTao ShaoJunyan LiuMeng YeShengwei Liu . Paired Electrochemical CO2 Reduction and HCHO Oxidation for the Cost-Effective Production of Value-Added Chemicals. Acta Physico-Chimica Sinica, 2024, 40(5): 2305028-0. doi: 10.3866/PKU.WHXB202305028

    2. [2]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    3. [3]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    4. [4]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    5. [5]

      Tongyan Yu Pan Xu . Visible-Light Photocatalyzed Radical Rearrangement Reaction. University Chemistry, 2025, 40(7): 169-176. doi: 10.12461/PKU.DXHX202409070

    6. [6]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    7. [7]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    8. [8]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    9. [9]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    10. [10]

      Qin LiHuihui ZhangHuajun GuYuanyuan CuiRuihua GaoWei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-0. doi: 10.3866/PKU.WHXB202402016

    11. [11]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    12. [12]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    13. [13]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    14. [14]

      Yuanqing WangYusong PanHongwu ZhuYanlei XiangRong HanRun HuangChao DuChengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050

    15. [15]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    16. [16]

      Xinzhe HUANGLihui XUYue YANGLiming WANGZhangyong LIUZhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212

    17. [17]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    18. [18]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    19. [19]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    20. [20]

      Ruifeng CHENChao XUJianting JIANGTianshe YANG . Gold nanorod/zinc oxide/mesoporous silica nanoplatform: A triple-modal platform for synergistic anticancer therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2272-2282. doi: 10.11862/CJIC.20250117

Metrics
  • PDF Downloads(998)
  • Abstract views(3457)
  • HTML views(51)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return