Citation: ZHANG Wen-Ying, MA Jing, YUAN Shuai, SHU Kun-Xian, DOU Yu-Sheng. A Semiclassical Dynamics Simulation on Charge Transfer and Radiationless Deactivation Excited State of π-Stacked Adenine-Thymine System[J]. Acta Physico-Chimica Sinica, ;2012, 28(07): 1676-1682. doi: 10.3866/PKU.WHXB201205041 shu

A Semiclassical Dynamics Simulation on Charge Transfer and Radiationless Deactivation Excited State of π-Stacked Adenine-Thymine System

  • Received Date: 24 February 2012
    Available Online: 4 May 2012

    Fund Project: 国家自然科学基金(21073242) (21073242) 重庆市自然科学基金(cstc2011jjA00009) (cstc2011jjA00009)重庆市教委科学技术项目(KJ120516)资助 (KJ120516)

  • A semiclassical electronic radiation ion dynamics (SERID) simulation was used to study the photophysical deactivation of π-stacked adenine and thymine. A laser was only applied to the thymine molecule during the simulations. The results showed that an (A+T-)* type exciplex was formed between excited thymine and unexcited adenine as a consequence of charge transfer. When the intermolecular distance was less than 0.300 nm, the stacked system was recovered to electronic neutrality by charge recombination because of the orbital delocalization effect. When the torsion angle of the C4'-C5' bond of the adenine molecule reached its maximum, the exciplex decayed to its ground state via an avoided crossing. The deactivation channel of the exciplex was found to be dependent on the intermolecular distance and deformation of the adenine molecule. It was difficult for the adenine molecule to under strong twist required for deactivation because of the steric hindrance encountered by the C4' and C5' atoms. Consequently, the lifetime of the A-T exciplex was clearly longer than that of the T-T exciplex.

  • 加载中
    1. [1]

      (1) Beukers, R.; Eker, A. P. M.; Lohman, P. H. M. DNA Repair2008, 7, 530. doi: 10.1016/j.dnarep.2007.11.010

    2. [2]

      (2) Cadet, J.; Sage, E.; Douki, T. Mutat. Res. 2005, 571, 3. doi: 10.1016/j.mrfmmm.2004.09.012

    3. [3]

      (3) Melnikova, V. O.; Ananthaswamy, H. N. Mutat. Res. 2005, 571,91. doi: 10.1016/j.mrfmmm.2004.11.015

    4. [4]

      (4) Mouret, S.; Baudouin, C.; Charveron, M.; Favier, A.; Cadet, J.;Douki, T. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 13765. doi: 10.1073/pnas.0604213103

    5. [5]

      (5) Pecourt, J. M. L.; Peon, J.; Kohler, B. J. Am. Chem. Soc. 2001,123, 10370. doi: 10.1021/ja0161453

    6. [6]

      (6) Sobolewski, A. L.; Domcke,W.; Hattig, C. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 17903. doi: 10.1073/pnas.0504087102

    7. [7]

      (7) Crespo-Hernández, C. E.; Kohler, B. J. Phys. Chem. B 2004,108, 11182. doi: 10.1021/jp0496046

    8. [8]

      (8) Crespo-Hernández, C. E.; Cohen, B.; Kohler, B. Nature 2005,436, 1141. doi: 10.1038/nature03933

    9. [9]

      (9) Kwok,W. M.; Ma, C. S.; Phillips, D. L. J. Am. Chem. Soc.2006, 128, 11894. doi: 10.1021/ja0622002

    10. [10]

      (10) Takaya, T.; Su, C.; de La Harpe, K.; Crespo-Hernández, C. E.;Kohler, B. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 10285. doi: 10.1073/pnas.0802079105

    11. [11]

      (11) Ullrich, S.; Schultz, T.; Zgierski, M. Z.; Stolow, A. Phys. Chem. Chem. Phys. 2004, 6, 2796.

    12. [12]

      (12) Ullrich, S.; Schultz, T.; Zgierski, M. Z.; Stolow, A. J. Am. Chem. Soc. 2004, 126, 2262. doi: 10.1021/ja030532q

    13. [13]

      (13) Eisinger, J.; Guéron, M.; Schulman, R. G.; Yamane, T. Proc. Natl. Acad. Sci. U. S. A. 1966, 55, 1015. doi: 10.1073/pnas.55.5.1015

    14. [14]

      (14) Birks, J. B. Nature 1967, 214, 1187. doi: 10.1038/2141187a0

    15. [15]

      (15) Middleton, C. T.; de La Harpe, K.; Su, C.; Law, Y. K.; Crespo-Hernández, C. E.; Kohler, B. Annu. Rev. Phys. Chem. 2009, 60,217. doi: 10.1146/annurev.physchem.59.032607.093719

    16. [16]

      (16) Santoro, F.; Barone, V.; Improta, R. J. Am. Chem. Soc. 2009,131, 15232. doi: 10.1021/ja904777h

    17. [17]

      (17) Markovitsi, D.; Gustavsson, T.; Talbot, F. Photochem. Photobiol. Sci. 2007, 6, 717. doi: 10.1039/b705674e

    18. [18]

      (18) Conti, I.; Altoe, P.; Stenta, M.; Garavelli, M.; Orlandi, G. Phys. Chem. Chem. Phys. 2010, 12, 5016.

    19. [19]

      (19) Kohler, B. J. Phys. Chem. Lett. 2010, 1, 2047. doi: 10.1021/jz100491x

    20. [20]

      (20) Shukla, M. K.; Leszczynski, J. J. Biomol. Struct. Dyn. 2007, 25,93.

    21. [21]

      (21) Kwok,W. M.; Ma, C.; Phillips, D. L. J. Phys. Chem. B 2009,113, 11527. doi: 10.1021/jp906265c

    22. [22]

      (22) Onidas, D.; Gustavsson, T.; Lazzarotto, E.; Markovitsi, D. Phys. Chem. Chem. Phys. 2007, 9, 5143.

    23. [23]

      (23) Schwalb, N. K.; Temps, F. Science 2008, 322, 243. doi: 10.1126/science.1161651

    24. [24]

      (24) Davies, R. J. H.; Malone, J. F.; Gan, Y.; Cardin, C. J.; Lee, M. P.H.; Neidle, S. Nucleic Acids Res. 2007, 35, 1048. doi: 10.1093/nar/gkl1101

    25. [25]

      (25) Dou, Y.; Torralva, B. R.; Allen, R. E. Chem. Phys. Lett. 2004,392, 352. doi: 10.1016/j.cplett.2004.05.087

    26. [26]

      (26) Dou, Y.; Torralva, B. R.; Allen, R. E. J. Mod. Optics. 2003, 50,2615.

    27. [27]

      (27) Boykin, T. B.; Bowen, R. C.; Klimeck, G. Phys. Rev. B 2001,63, 245314. doi: 10.1103/PhysRevB.63.245314

    28. [28]

      (28) Haugk, M.; Elsner, J.; Frauenheim, T.; Seifert, G.; Sternberg,M. Phys. Status Solidi B 2000, 217, 473. doi: 10.1002/(SICI)1521-3951(200001)217:1<473::AID-PSSB473>3.0.CO;2-N

    29. [29]

      (29) Frauenheim, T.; Seifert, G.; Elstner, M.; Niehaus, T. A.; Köhler,C.; Amkreutz, M.; Sternberg, M.; Hajnal, Z.; Carlo, D. A.;Suhai, S. J. Phys: Condens. Matter 2002, 14, 3015. doi: 10.1088/0953-8984/14/11/313

    30. [30]

      (30) Wanko, M.; Garavelli, M.; Bernardi, F.; Niehaus, T. A.;Frauenheim, T.; Elstner, M. J. Chem. Phys. 2004, 120, 1674.doi: 10.1063/1.1635798

    31. [31]

      (31) Zheng, G.; Lundberg, M.; Jakowski, J.; Vreven, T.; Frisch, M.J.; Morokuma, K. Int. J. Quantum Chem. 2009, 109, 1841. doi: 10.1002/qua.22002

    32. [32]

      (32) Yuan, S.; Dou, Y. S.;Wu,W. F.; Hu, Y.; Zhao, J. S. J. Phys. Chem. A 2008, 112, 13326.

    33. [33]

      (33) Yuan, S.;Wu,W. F.; Dou, Y. S.; Zhao, J. S. Chin. Chem. Lett.2008, 19, 1379. doi: 10.1016/j.cclet.2008.07.007

    34. [34]

      (34) Dou, Y. S.; Hu, Y.; Yuan, S.;Wu,W. F.; Tang, H. Mol. Phys.2009, 107, 181. doi: 10.1080/00268970902769497

    35. [35]

      (35) Yuan, S.;Wang, D.; Bai, M. Z.;Wei, Z. L.; Meng, P.; Dou, Y. S.Journal of Chongqing Univerisity and Telecommunications (Natural Science Edition) 2009, 21, 821. [袁帅, 王丹,白明泽, 魏照林, 蒙平, 豆育升. 重庆邮电大学学报(自然科学版), 2009, 21, 821.]

    36. [36]

      (36) Yuan, S.;Wu,W. F.;Wen, Z. L.; Shu, K. X.; Tang, H.; Dou, Y.S.; Lo, G. Mol. Phys. 2010, 108, 3431. doi: 10.1080/00268976.2010.520755

    37. [37]

      (37) Lei, Y. B.; Yuan, S.; Dou, Y. S.;Wang, Y. B.;Wen, Z. Y. J. Phys. Chem. A 2008, 112, 8497. doi: 10.1021/jp802483b

    38. [38]

      (38) Shu, K. X.; Ma, J.; Yuan, S.; Dou, Y. S. Journal of Chongqing Univerisity and Telecommunications (Natural Science Edition)2011, 23, 780. [舒坤贤, 马静, 袁帅, 豆育升. 重庆邮电大学学报(自然科学版), 2011, 23, 780.]

    39. [39]

      (39) Zhang,W. Y.; Yuan, S.; Li, A. Y.; Dou, Y. S.; Zhao, J. S.; Fang,W. H. J. Phys. Chem. C 2010, 114, 5594. doi: 10.1021/jp907290f

    40. [40]

      (40) Dou, Y. S.; Xiong, S. S.;Wu,W. F.; Yuan, S.; Tang, H.J. Photochem. Photobiol. B 2010, 101, 31. doi: 10.1016/j.jphotobiol.2010.06.008

    41. [41]

      (41) Zhang,W. Y.; Yuan, S.;Wang, Z. J.; Qi, Z. M.; Zhao, J. S.; Dou,Y. S.; Lo, G. Chem. Phys. Lett. 2011, 506, 303. doi: 10.1016/j.cplett.2011.03.024

    42. [42]

      (42) Yuan, S.; Zhang,W. Y.; Li, A. Y.; Zhu, Y. M.; Dou, Y. S. Acta Phys. -Chim. Sin. 2011, 27, 825. [袁帅, 张文英, 李安阳,朱义敏, 豆育升. 物理化学学报, 2011, 27, 825.] doi: 10.3866/pku.WHXB20110337

    43. [43]

      (43) Dou, Y. S.; Li,W.; Yuan, S.; Zhang,W. Y.; Li, A. Y.; Shu, K. X.;Tang, H. Acta Phys. -Chim. Sin. 2011, 27, 2559. [豆育升,李伟, 袁帅, 张文英, 李安阳, 舒坤贤, 唐红. 物理化学学报, 2011, 27, 2559.] doi: 10.3866/pku.WHXB20111115

    44. [44]

      (44) Yuan, S.; Zhang,W. Y.; Liu, L. H.; Dou, Y. S.; Fang,W. H.; Lo,G. V. J. Phys. Chem. A 2011, 115, 13291. doi: 10.1021/jp207550a

    45. [45]

      (45) Rehm, D.;Weller, A. Isr. J. Chem. 1970, 8, 259.

    46. [46]

      (46) Liu, Q.; Liu, Z. L. Chin. J. Org. Chem. 2009, 29, 380. [刘强,刘中立. 有机化学, 2009, 29, 380.]

    47. [47]

      (47) Seidel, C. A. M.; Schulz, A.; Sauer, M. H. M. J. Phys. Chem.1996, 100, 5541. doi: 10.1021/jp951507c

    48. [48]

      (48) Devoe, H.; Tinoco, I. J. Mol. Biol. 1962, 4, 500. doi: 10.1016/S0022-2836(62)80105-3

    49. [49]

      (49) Zhang, L. B.; Bu, Y. X. J. Phys. Chem. B 2008, 112, 10723. doi: 10.1021/jp802556a

    50. [50]

      (50) Zhang, L. B.; Li, H. F.; Li, J. L.; Chen, X. H.; Bu, Y. X.J. Comput. Chem. 2009, 31, 825.

    51. [51]

      (51) Zhang,W. Y. Semiclassical Simulation for Deaactivation ofStacked DNA Bases. Ph.D. Dissertation, Northwest University,Xi'an, 2011. [张文英. DNA堆积碱基激发态失活的半经典动力学模拟[D]. 西安: 西北大学, 2011.]


  • 加载中
    1. [1]

      Yushan CaiFang-Xing Xiao . Revisiting MXenes-based Photocatalysis Landscape: Progress, Challenges, and Future Perspectives. Acta Physico-Chimica Sinica, 2024, 40(8): 2306048-0. doi: 10.3866/PKU.WHXB202306048

    2. [2]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    3. [3]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    4. [4]

      Xiutao XuChunfeng ShaoJinfeng ZhangZhongliao WangKai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-0. doi: 10.3866/PKU.WHXB202309031

    5. [5]

      Jianyin HeLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030

    6. [6]

      Weilai YuChuanbiao Bie . Unveiling S-Scheme Charge Transfer Mechanism. Acta Physico-Chimica Sinica, 2024, 40(4): 2307022-0. doi: 10.3866/PKU.WHXB202307022

    7. [7]

      Weikang WangYadong WuJianjun ZhangKai MengJinhe LiLele WangQinqin Liu . Green H2O2 synthesis via melamine-foam supported S-scheme Cd0.5Zn0.5In2S4/S-doped carbon nitride heterojunction: synergistic interfacial charge transfer and local photothermal effect. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-0. doi: 10.1016/j.actphy.2025.100093

    8. [8]

      You WuChang ChengKezhen QiBei ChengJianjun ZhangJiaguo YuLiuyang Zhang . Efficient Photocatalytic Production of H2O2 over ZnO/D-A Conjugated Polymer S-scheme Heterojunction and Charge Transfer Dynamics Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-0. doi: 10.3866/PKU.WHXB202406027

    9. [9]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    10. [10]

      Xuexia He Zhibin Lei Pei Chen Qi Li Weiyu Deng Peng Hu . 以“溶度积规则”指导电荷转移共晶沉淀析出——材料类专业无机化学教学改革案例. University Chemistry, 2025, 40(8): 1-10. doi: 10.12461/PKU.DXHX202410099

    11. [11]

      Peng LiYuanying CuiZhongliao WangGraham DawsonChunfeng ShaoKai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-0. doi: 10.1016/j.actphy.2025.100065

    12. [12]

      Yuxin CHENYanni LINGYuqing YAOKeyi WANGLinna LIXin ZHANGQin WANGHongdao LIWenmin WANG . Construction, structures, and interaction with DNA of two Sm4 complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1141-1150. doi: 10.11862/CJIC.20240258

    13. [13]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    14. [14]

      Yajuan XingHui XueJing SunNiankun GuoTianshan SongJiawen SunYi-Ru HaoQin Wang . Cu3P-Induced Charge-Oriented Transfer and Surface Reconstruction of Ni2P to Achieve Efficient Oxygen Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(3): 2304046-0. doi: 10.3866/PKU.WHXB202304046

    15. [15]

      Chang LiuTao WuLijiao DengXuzi LiXin FuShuzhen LiaoWenjie MaGuoqiang ZouHai Yang . Programmed DNA walkers for biosensors. Chinese Chemical Letters, 2024, 35(9): 109307-. doi: 10.1016/j.cclet.2023.109307

    16. [16]

      Yaqin Zheng Lian Zhuo Meng Li Chunying Rong . Enhancing Understanding of the Electronic Effect of Substituents on Benzene Rings Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 193-198. doi: 10.12461/PKU.DXHX202406119

    17. [17]

      Leyuan Sun Xiaoyu Xie Fangfang Chen . 敦煌壁画的“DNA变身”. University Chemistry, 2025, 40(8): 211-217. doi: 10.12461/PKU.DXHX202410079

    18. [18]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    19. [19]

      Yanglin JiangMingqing ChenMin LiangYige YaoYan ZhangPeng WangJianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 2309027-0. doi: 10.3866/PKU.WHXB202309027

    20. [20]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

Metrics
  • PDF Downloads(789)
  • Abstract views(2138)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return