Citation: XIONG Li-Long, XU You-Long, ZHANG Cheng, TAO Tao. Doping-Coating Surface Modification of Spinel LiMn2O4 Cathode Material with Al3+ for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinica, ;2012, 28(05): 1177-1182. doi: 10.3866/PKU.WHXB201203092 shu

Doping-Coating Surface Modification of Spinel LiMn2O4 Cathode Material with Al3+ for Lithium-Ion Batteries

  • Received Date: 26 December 2011
    Available Online: 9 March 2012

  • A doping-coating surface modification method was used to improve the cycle performance of the lithium-ion battery cathode material spinel LiMn2O4. Al was chosen as the doping element and Al(NO3)3 as the raw material. We investigated Al3+ doping of 7.1%(atomic fraction) at the temperatures of 300, 400, 500, 600, 700, 750, and 800 °C. It was found that at increasing temperatures, the maximum specific capacity of the modified samples first increased and then decreased, with a maximum at 700 °C. The fading rate increased initially with temperature as well, and then decreased, followed by a small rise with temperature. This is because the coated layer gradually reacted with the LiMn2O4 granule at elevated temperatures and became a completely solid solution layer by 750 °C. The fading rate reached the minimum at the same time. Subsequently, the solid solution layer diffused into the LiMn2O4 granule, weakening the granule protection so that the fading rate slightly increased. Among these samples, the maximum specific capacity (133.6 mAh·g-1) was for the sample treated at 700 °C for 5 h, and the fading rate was 3.4% after 50 cycles. It is shown that doping-coating surface modification with Al3+ may enable the commercial application of spinel LiMn2O4 cathode material for lithium-ion batteries.
  • 加载中
    1. [1]

      (1) Thackeray, M. M.; David, W. I. F.; Bruce, P. G.; odenough, J.B. Mat. Res. Bull.1983, 18, 461.  

    2. [2]

      (2) Kim, J.; Manthiram, A. Nature 1997, 390, 265.  

    3. [3]

      (3) Tarascon, J.M.; Armand, M. Nature 2001, 414, 359.  

    4. [4]

      (4) Tanaka, T.; Ohta, K.; Arai, N. J. Power Sources 2001, 2, 97.

    5. [5]

      (5) Xia, Y.; Yoshio, M. J. Electrochem. Soc. 1996, 143, 825.  

    6. [6]

      (6) An, H. L.; Wu, N. N.; Lei, X. L.; Xu, J. L.; Qi, L. Acta Phys. -Chim. Sin. 2007, 23, 60. [安洪力, 吴宁宁, 雷向利, 徐金龙, 其鲁, 物理化学学报, 2007, 23, 60.]

    7. [7]

      (7) Wang, J.; Li, T., Qi, L. Acta Phys. -Chim. Sin. 2007, 23, 75. [王剑, 李桐进, 其鲁, 物理化学学报, 2007, 23, 75.]

    8. [8]

      (8) Katakura, K.; Wada, K.; Kajiki, Y.; Yamamoto, A.; Ogumi, Z. J. Power Sources 2009, 189, 240.  

    9. [9]

      (9) Jiang, C. H.; Dou, S. X.; Liu, H. K.; M. Ichihara, Zhou, H. S. J. Power Sources 2007, 172, 410.  

    10. [10]

      (10) Xia, Y.; Zhou, Y.; Yoshio, M. J. Electrochem. Soc. 1997, 144, 2593.  

    11. [11]

      (11) Jang, D. H.; Oh, S. M. J. Electrochem. Soc. 1997, 144, 3342.  

    12. [12]

      (12) Moon, H. S.; Park, J. W. J. Power Sources 2003, 119-121, 717.

    13. [13]

      (13) Shi, S.; Ouyang, C.; Wang, D. S.; Chen, L.; Huang, X. Solid State Commun. 2003, 126, 531.  

    14. [14]

      (14) Tang, Z. Y.; Fan, X. H.; Zhang, N. Acta Phys. -Chim. Sin. 2005, 21, 934. [唐致远, 范星河, 张娜, 物理化学学报, 2005, 21, 934.]

    15. [15]

      (15) Tang, Z. Y.; Feng, J. J. Acta Phys. -Chim. Sin. 2003, 19, 1025. [唐致远, 冯季军, 物理化学学报, 2003, 19, 1025.]

    16. [16]

      (16) Xiong, L. L.; Xu, Y. L.; Zhang, C.; Zhang, Z. W.; Li, J. B. J. Solid State Electrochem. 2011, 15, 1263.  

    17. [17]

      (17) Xiong, L. L.; Xu, Y. L.; Tao, T.; odenough J.B. J. Power Sources 2012, 199, 214.  

    18. [18]

      (18) Raja, M. W.; Mahanty, S.; Basu, R. N. J. Power Sources 2009, 192, 618.  

    19. [19]

      (19) Yuan, A.; Tian, L.; Xu, W.; Wang, Y. J. Power Sources 2010, 195, 5032.  

    20. [20]

      (20) Matsumoto, K.; Fukutsuka, T.; Okumura. T.; Uchimoto, Y.; Amezawa, K.; Inaba, M.; Tasaka, A. J. Power Sources 2009, 189, 599.  

    21. [21]

      (21) Ouyang, C. Y.; Zeng, X. M.; Sljivancanin, Z. J. Phys. Chem. C 2010, 114, 4756.  

    22. [22]

      (22) Gnanaraj, J. S.; Pol, V. G.; Gedanken, A.; Aurbach, D. Electrochem. Commun. 2003, 5, 940.  

    23. [23]

      (23) Walz, K. A.; Johnson, C. S.; Genthe, J.; Stoiber, L. C.; Zeltner, W. A.; Anderson, M. A.; Thackeray, M. M. J. Power Sources 2010, 195, 4943.  

    24. [24]

      (24) Li, X. F.; Xu, Y. L. Appl. Surf. Sci. 2007, 253, 8592.  

    25. [25]

      (25) Li, X. F.; Xu, Y. L. Electrochem. Commun. 2007, 9, 2023.  

    26. [26]

      (26) Xu, Y. L.; Li, X. F.; Ge, L. P. Appl. Surf. Sci. 2007, 253, 8453.  

    27. [27]

      (27) Xiong, L. L.; Xu, Y. L.; Tao, T.; Du, X. F.; Li, J. B. J. Mater. Chem. 2011, 13, 4937.

    28. [28]

      (28) Yi, T. F.; Hu, X. G.; Gao, K. J. Power Sources 2006, 162, 636.  

    29. [29]

      (29) Thirunakaran, R.; Sivashanmugam, A.; pukumar, S.; Dunnill, C. W.; Gre ry, D. H. J. Phys. Chem. Solids 2008, 69, 2082.  

    30. [30]

      (30) Xiao, L.; Zhao, Y.; Yang, Y.; Cao, Y. Electrochim. Acta 2008, 54, 545.  

  • 加载中
    1. [1]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    2. [2]

      Jianbao MeiBei LiShu ZhangDongdong XiaoPu HuGeng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5−xMn0.5V1.5−xZrx (PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-0. doi: 10.3866/PKU.WHXB202407023

    3. [3]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

    4. [4]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    5. [5]

      Liangliang SongHaoyan LiangShunqing LiBao QiuZhaoping Liu . Challenges and strategies on high-manganese Li-rich layered oxide cathodes for ultrahigh-energy-density batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-0. doi: 10.1016/j.actphy.2025.100085

    6. [6]

      Yuyao WangZhitao CaoZeyu DuXinxin CaoShuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2406014-0. doi: 10.3866/PKU.WHXB202406014

    7. [7]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    8. [8]

      Lingbang QiuJiangmin JiangLibo WangLang BaiFei ZhouGaoyu ZhouQuanchao ZhuangYanhua CuiIn Situ Electrochemical Impedance Spectroscopy Monitoring of the High-Temperature Double-Discharge Mechanism of Nb12WO33 Cathode Material for Long-Life Thermal Batteries. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-0. doi: 10.1016/j.actphy.2024.100040

    9. [9]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    10. [10]

      Xintong ZhuBin CaoChong YanCheng TangAibing ChenQiang Zhang . Advances in coating strategies for graphite anodes in lithium-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100096-0. doi: 10.1016/j.actphy.2025.100096

    11. [11]

      Siyu ZhangKunhong GuBing'an LuJunwei HanJiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-0. doi: 10.3866/PKU.WHXB202309028

    12. [12]

      Qi LiPingan LiZetong LiuJiahui ZhangHao ZhangWeilai YuXianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030

    13. [13]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    14. [14]

      Ying LiYushen ZhaoKai ChenXu LiuTingfeng YiLi-Feng Chen . Rational Design of Cross-Linked N-Doped C-Sn Nanofibers as Free-Standing Electrodes towards High-Performance Li-Ion Battery Anodes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305007-0. doi: 10.3866/PKU.WHXB202305007

    15. [15]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    16. [16]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    17. [17]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    18. [18]

      Jingshuo ZhangYue ZhaiZiyun ZhaoJiaxing HeWei WeiJing XiaoShichao WuQuan-Hong Yang . Research Progress of Functional Binders in Silicon-Based Anodes for Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306006-0. doi: 10.3866/PKU.WHXB202306006

    19. [19]

      Aoyu HuangJun XuYu HuangGui ChuMao WangLili WangYongqi SunZhen JiangXiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2408007-0. doi: 10.3866/PKU.WHXB202408007

    20. [20]

      Jiaxuan ZuoKun ZhangJing WangXifei Li . Nucleation Regulation and Mechanism of Precursors for Nickel Cobalt Manganese-based Cathode Materials in Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100009-0. doi: 10.3866/PKU.WHXB202404042

Metrics
  • PDF Downloads(805)
  • Abstract views(2804)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return