Citation:
XIONG Li-Long, XU You-Long, ZHANG Cheng, TAO Tao. Doping-Coating Surface Modification of Spinel LiMn2O4 Cathode Material with Al3+ for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinica,
;2012, 28(05): 1177-1182.
doi:
10.3866/PKU.WHXB201203092
-
A doping-coating surface modification method was used to improve the cycle performance of the lithium-ion battery cathode material spinel LiMn2O4. Al was chosen as the doping element and Al(NO3)3 as the raw material. We investigated Al3+ doping of 7.1%(atomic fraction) at the temperatures of 300, 400, 500, 600, 700, 750, and 800 °C. It was found that at increasing temperatures, the maximum specific capacity of the modified samples first increased and then decreased, with a maximum at 700 °C. The fading rate increased initially with temperature as well, and then decreased, followed by a small rise with temperature. This is because the coated layer gradually reacted with the LiMn2O4 granule at elevated temperatures and became a completely solid solution layer by 750 °C. The fading rate reached the minimum at the same time. Subsequently, the solid solution layer diffused into the LiMn2O4 granule, weakening the granule protection so that the fading rate slightly increased. Among these samples, the maximum specific capacity (133.6 mAh·g-1) was for the sample treated at 700 °C for 5 h, and the fading rate was 3.4% after 50 cycles. It is shown that doping-coating surface modification with Al3+ may enable the commercial application of spinel LiMn2O4 cathode material for lithium-ion batteries.
-
-
-
[1]
(1) Thackeray, M. M.; David, W. I. F.; Bruce, P. G.; odenough, J.B. Mat. Res. Bull.1983, 18, 461.
- [2]
- [3]
-
[4]
(4) Tanaka, T.; Ohta, K.; Arai, N. J. Power Sources 2001, 2, 97.
-
[5]
(5) Xia, Y.; Yoshio, M. J. Electrochem. Soc. 1996, 143, 825.
-
[6]
(6) An, H. L.; Wu, N. N.; Lei, X. L.; Xu, J. L.; Qi, L. Acta Phys. -Chim. Sin. 2007, 23, 60. [安洪力, 吴宁宁, 雷向利, 徐金龙, 其鲁, 物理化学学报, 2007, 23, 60.]
-
[7]
(7) Wang, J.; Li, T., Qi, L. Acta Phys. -Chim. Sin. 2007, 23, 75. [王剑, 李桐进, 其鲁, 物理化学学报, 2007, 23, 75.]
-
[8]
(8) Katakura, K.; Wada, K.; Kajiki, Y.; Yamamoto, A.; Ogumi, Z. J. Power Sources 2009, 189, 240.
-
[9]
(9) Jiang, C. H.; Dou, S. X.; Liu, H. K.; M. Ichihara, Zhou, H. S. J. Power Sources 2007, 172, 410.
-
[10]
(10) Xia, Y.; Zhou, Y.; Yoshio, M. J. Electrochem. Soc. 1997, 144, 2593.
-
[11]
(11) Jang, D. H.; Oh, S. M. J. Electrochem. Soc. 1997, 144, 3342.
-
[12]
(12) Moon, H. S.; Park, J. W. J. Power Sources 2003, 119-121, 717.
-
[13]
(13) Shi, S.; Ouyang, C.; Wang, D. S.; Chen, L.; Huang, X. Solid State Commun. 2003, 126, 531.
-
[14]
(14) Tang, Z. Y.; Fan, X. H.; Zhang, N. Acta Phys. -Chim. Sin. 2005, 21, 934. [唐致远, 范星河, 张娜, 物理化学学报, 2005, 21, 934.]
-
[15]
(15) Tang, Z. Y.; Feng, J. J. Acta Phys. -Chim. Sin. 2003, 19, 1025. [唐致远, 冯季军, 物理化学学报, 2003, 19, 1025.]
-
[16]
(16) Xiong, L. L.; Xu, Y. L.; Zhang, C.; Zhang, Z. W.; Li, J. B. J. Solid State Electrochem. 2011, 15, 1263.
-
[17]
(17) Xiong, L. L.; Xu, Y. L.; Tao, T.; odenough J.B. J. Power Sources 2012, 199, 214.
-
[18]
(18) Raja, M. W.; Mahanty, S.; Basu, R. N. J. Power Sources 2009, 192, 618.
-
[19]
(19) Yuan, A.; Tian, L.; Xu, W.; Wang, Y. J. Power Sources 2010, 195, 5032.
-
[20]
(20) Matsumoto, K.; Fukutsuka, T.; Okumura. T.; Uchimoto, Y.; Amezawa, K.; Inaba, M.; Tasaka, A. J. Power Sources 2009, 189, 599.
-
[21]
(21) Ouyang, C. Y.; Zeng, X. M.; Sljivancanin, Z. J. Phys. Chem. C 2010, 114, 4756.
-
[22]
(22) Gnanaraj, J. S.; Pol, V. G.; Gedanken, A.; Aurbach, D. Electrochem. Commun. 2003, 5, 940.
-
[23]
(23) Walz, K. A.; Johnson, C. S.; Genthe, J.; Stoiber, L. C.; Zeltner, W. A.; Anderson, M. A.; Thackeray, M. M. J. Power Sources 2010, 195, 4943.
- [24]
-
[25]
(25) Li, X. F.; Xu, Y. L. Electrochem. Commun. 2007, 9, 2023.
-
[26]
(26) Xu, Y. L.; Li, X. F.; Ge, L. P. Appl. Surf. Sci. 2007, 253, 8453.
-
[27]
(27) Xiong, L. L.; Xu, Y. L.; Tao, T.; Du, X. F.; Li, J. B. J. Mater. Chem. 2011, 13, 4937.
-
[28]
(28) Yi, T. F.; Hu, X. G.; Gao, K. J. Power Sources 2006, 162, 636.
-
[29]
(29) Thirunakaran, R.; Sivashanmugam, A.; pukumar, S.; Dunnill, C. W.; Gre ry, D. H. J. Phys. Chem. Solids 2008, 69, 2082.
-
[30]
(30) Xiao, L.; Zhao, Y.; Yang, Y.; Cao, Y. Electrochim. Acta 2008, 54, 545.
-
[1]
-
-
-
[1]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
-
[2]
Jianbao Mei , Bei Li , Shu Zhang , Dongdong Xiao , Pu Hu , Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5−xMn0.5V1.5−xZrx (PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-0. doi: 10.3866/PKU.WHXB202407023
-
[3]
Pengyang FAN , Shan FAN , Qinjin DAI , Xiaoying ZHENG , Wei DONG , Mengxue WANG , Xiaoxiao HUANG , Yong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339
-
[4]
Yuanchao LI , Weifeng HUANG , Pengchao LIANG , Zifang ZHAO , Baoyan XING , Dongliang YAN , Li YANG , Songlin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252
-
[5]
Liangliang Song , Haoyan Liang , Shunqing Li , Bao Qiu , Zhaoping Liu . Challenges and strategies on high-manganese Li-rich layered oxide cathodes for ultrahigh-energy-density batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-0. doi: 10.1016/j.actphy.2025.100085
-
[6]
Yuyao Wang , Zhitao Cao , Zeyu Du , Xinxin Cao , Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2406014-0. doi: 10.3866/PKU.WHXB202406014
-
[7]
Xiangyu CAO , Jiaying ZHANG , Yun FENG , Linkun SHEN , Xiuling ZHANG , Juanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270
-
[8]
Lingbang Qiu , Jiangmin Jiang , Libo Wang , Lang Bai , Fei Zhou , Gaoyu Zhou , Quanchao Zhuang , Yanhua Cui . In Situ Electrochemical Impedance Spectroscopy Monitoring of the High-Temperature Double-Discharge Mechanism of Nb12WO33 Cathode Material for Long-Life Thermal Batteries. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-0. doi: 10.1016/j.actphy.2024.100040
-
[9]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
-
[10]
Xintong Zhu , Bin Cao , Chong Yan , Cheng Tang , Aibing Chen , Qiang Zhang . Advances in coating strategies for graphite anodes in lithium-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100096-0. doi: 10.1016/j.actphy.2025.100096
-
[11]
Siyu Zhang , Kunhong Gu , Bing'an Lu , Junwei Han , Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-0. doi: 10.3866/PKU.WHXB202309028
-
[12]
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030
-
[13]
Xinpeng LIU , Liuyang ZHAO , Hongyi LI , Yatu CHEN , Aimin WU , Aikui LI , Hao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488
-
[14]
Ying Li , Yushen Zhao , Kai Chen , Xu Liu , Tingfeng Yi , Li-Feng Chen . Rational Design of Cross-Linked N-Doped C-Sn Nanofibers as Free-Standing Electrodes towards High-Performance Li-Ion Battery Anodes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305007-0. doi: 10.3866/PKU.WHXB202305007
-
[15]
Junke LIU , Kungui ZHENG , Wenjing SUN , Gaoyang BAI , Guodong BAI , Zuwei YIN , Yao ZHOU , Juntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189
-
[16]
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
-
[17]
Yifeng Xu , Jiquan Liu , Bin Cui , Yan Li , Gang Xie , Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009
-
[18]
Jingshuo Zhang , Yue Zhai , Ziyun Zhao , Jiaxing He , Wei Wei , Jing Xiao , Shichao Wu , Quan-Hong Yang . Research Progress of Functional Binders in Silicon-Based Anodes for Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306006-0. doi: 10.3866/PKU.WHXB202306006
-
[19]
Aoyu Huang , Jun Xu , Yu Huang , Gui Chu , Mao Wang , Lili Wang , Yongqi Sun , Zhen Jiang , Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2408007-0. doi: 10.3866/PKU.WHXB202408007
-
[20]
Jiaxuan Zuo , Kun Zhang , Jing Wang , Xifei Li . Nucleation Regulation and Mechanism of Precursors for Nickel Cobalt Manganese-based Cathode Materials in Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100009-0. doi: 10.3866/PKU.WHXB202404042
-
[1]
Metrics
- PDF Downloads(805)
- Abstract views(2804)
- HTML views(4)