Citation: ZHANG Ming-Bo,  NG Li-Dong. Evolution of the Molecular Face during the Reaction Process of F-+CH3Cl→CH3F+Cl-[J]. Acta Physico-Chimica Sinica, ;2012, 28(05): 1120-1126. doi: 10.3866/PKU.WHXB201203082 shu

Evolution of the Molecular Face during the Reaction Process of F-+CH3Cl→CH3F+Cl-

  • Received Date: 27 December 2011
    Available Online: 8 March 2012

    Fund Project: 国家自然科学基金(21133005, 21073080, 21011120087, 20703022)资助项目 (21133005, 21073080, 21011120087, 20703022)

  • Bimolecular nucleophilic substitution (SN2) reactions are among the fundamental organic reactions, in which electron transfer from the nucleophilic group to the leaving group plays an essential role. We use a high-level ab initio CCSD(T)/aug-cc-pVDZ method in conjunction with our previouslydeveloped molecular face (MF) theory, to investigate the SN2 reaction F-+CH3Cl→CH3F+Cl-. Dynamic representations of molecular shape evolution and electron transfer features throughout the reaction are vividly presented. It is found that along the intrinsic reaction coordinate (IRC), from the beginning of the reaction to the prereaction complex, the molecular intrinsic characteristic contour (MICC) of the nucleophile (F-) contracts slowly, while the electron density on the MICC increases slowly. The MICC of F then expands quickly, and the electron density decreases sharply, especially from the transition state to the product complex. However, for the leaving group (Cl), the MICC contracts, and the electron density increases all along the reaction. Investigations of the potential acting on an electron in a molecule (PAEM) show that, as the reaction progresses, the PAEM gradually decreases between fluorine and carbon, while it gradually increases between carbon and chlorine. This study enhances our understanding of the dynamic processes of bond-forming between F and C atoms and bond-breaking between C and Cl atoms.
  • 加载中
    1. [1]

      (1) Brauman, J. I.; Olmstead, W. N.; Lieder, C. J. Am. Chem. Soc. 1974, 96, 4030.

    2. [2]

      (2) Glukhovtsev, M. N.; Bach, R. D.; Pross, A.; Radom, L. Chem. Phys. Lett. 1996, 260, 558.

    3. [3]

      (3) Flanagin, L. W.; Balbuena, P. B.; Johnston, K. P.; Rossky, P. T. J. Phys. Chem. 1995, 99, 5196.

    4. [4]

      (4) Wladkowski, B. D.; Brauman, J. I. J. Phys. Chem. 1993, 97, 13158.  

    5. [5]

      (5) Duke, A. J.; Bader, R. F. W. Chem. Phys. Lett. 1971, 10, 631.  

    6. [6]

      (6) Tachikawa, H.; Igarashi, M. Chem. Phys. Lett. 1999, 303, 81.  

    7. [7]

      (7) Li, C.; Ross, P.; Szulejko, J. E.; McMahon, T. B. J. Am. Chem. Soc. 1996, 118, 9360.  

    8. [8]

      (8) Hase, W. L.; Sun, L.; Song, K. Science 2002, 296, 875.  

    9. [9]

      (9) Hase, W. L. Science 1994, 266, 998.  

    10. [10]

      (10) Katherine, V.; Benjamin, I. J. Phys. Chem. C 2011, 115, 2290.  

    11. [11]

      (11) Glukhovtsev, M. N.; Pross, A.; Radom, L. J. Am. Chem. Soc. 1995, 117, 2024.  

    12. [12]

      (12) Chandrasekhar, J.; Smith, S. F.; Jorgensen W. L. J. Am. Chem. Soc. 1985, 107, 154  

    13. [13]

      (13) Zhang, J.; William, L. H. J. Phys. Chem. A 2010, 114, 9635.  

    14. [14]

      (14) Parthiban, S.; Oliveira, G.; Martin, J. M. L. 2001, 105, 895.  

    15. [15]

      (15) DeTuri, V. F.; Hintz, P. A.; Ervin, K. M. J. Phys. Chem. A 1997, 101, 5969.  

    16. [16]

      (16) Chabinyc, M. L.; Craig, S. L.; Regan, C. K.; Brauman, J. I. Science 1998, 279, 1882.  

    17. [17]

      (17) Wolfe, S. Can. J. Chem. 1984, 62, 1465.  

    18. [18]

      (18) Shi, Z.; Boyd, R. J. J. Am. Chem. Soc. 1990, 112, 6789.  

    19. [19]

      (19) Glukhovtsev, M. N.; Pross, A.; Radom, L. J. Am. Chem. Soc. 1996, 118, 6273.  

    20. [20]

      (20) nzales, J. M.; Cox, R. S., III.; Brown, S. T.; Allen, W. D.; Schaefer, H. F., III. J. Phys. Chem. A 2001, 105, 11327.  

    21. [21]

      (21) Botschwina, P.; Horn, M.; Seeger, S.; Oswald, R. Ber. Bunsen-Ges. Phys. Chem. 1997, 101, 387.

    22. [22]

      (22) Bader, R. F. W.; Duke, A. J.; Messer, R. R. J. Am. Chem. Soc. 1973, 95, 7715.  

    23. [23]

      (23) Knoerr, E. K.; Eberhart, M. E. J. Phys. Chem. A 2001, 105, 880.  

    24. [24]

      (24) Balvins, J. J.; Copper, D. L. J. Phys. Chem. A 2004, 108, 914.  

    25. [25]

      (25) Safi, B.; Choko, K.; Geerlings, P. J. Phys. Chem. A 2001, 105, 591.  

    26. [26]

      (26) Yang, Z. Z.; Davidson, E. R. Int. J. Quantum Chem. 1996, 62, 47.

    27. [27]

      (27) Yang, Z. Z.; Zhao, D. X. Chem. Phys. Lett. 1998, 292, 387.  

    28. [28]

      (28) ng, L. D.; Zhao, D. X.; Yang, Z. Z. J. Mol. Struc. -Theochem 2003, 636, 57.  

    29. [29]

      (29) Yang, Z. Z.; Zhao, D. X.; Wu, Y. J. Chem. Phys. 2004, 121, 3452.

    30. [30]

      (30) Zhang, M. B.; Yang, Z. Z. J. Phys. Chem. A 2005, 109, 4816.  

    31. [31]

      (31) Yang, Z. Z.; ng, L. D.; Zhao, D. X.; Zhang, M. B. J. Comput. Chem. 2005, 26, 35.  

    32. [32]

      (32) Zhao, D. X.; ng, L. D.; Yang, Z. Z. J. Phys. Chem. A 2005, 109, 10121.  

    33. [33]

      (33) ng, L. D.; Zhao, D. X.; Yang, Z. Z. Sci. China Ser. B Chem. 2005, 48, 89.  

    34. [34]

      (34) Shi, H.; Zhao, D. X.; Yang, Z. Z. Acta Phys. -Chim. Sin. 2007, 23, 1145. [石华, 赵东霞, 杨忠志. 物理化学学报, 2007, 23, 1145.]

    35. [35]

      (35) Zhao, D. X.; Yang, Z. Z. J. Theor. Comput. Chem. 2008, 7, 303.  

    36. [36]

      (36) Yang, Z. Z.; Ding, Y. L.; Zhao, D. X. ChemPhysChem 2008, 9, 2379.  

    37. [37]

      (37) ng, L. D.; Yang, Z. Z. J. Comput. Chem. 2010, 31, 2098.

    38. [38]

      (38) Polo, V.; nzalez, N. P.; Silvi, B.; Andres, J. Theor. Chem. Acc. 2008, 120, 341.  

    39. [39]

      (39) Purvis, G. D., III.; Bartlett, R. J. J. Chem. Phys. 1982, 76, 1910.  

    40. [40]

      (40) Scuseria, G. E.; Janssen, C. L.; Schaeffer, H. F., III. J. Chem. Phys. 1988, 89, 7382.  

    41. [41]

      (41) Woon, D. E.; Dunning, T. H., Jr. J. Chem. Phys. 1993, 98, 1358.  

    42. [42]

      (42) Angel, L. A.; Ervin, K. M. J. Phys. Chem. A 2001, 105, 4042.  

    43. [43]

      (43) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al . Gaussian 03, Revision A. 01. Gaussian Inc.: Pittsburgh, PA, 2003.

    44. [44]

      (44) Davidson, E. R. MELD Program Description. ESCOM: New York, 1990.

    45. [45]

      (45) Matlab 7.0, Release 14; The Mathworks Inc.: Natick, MA, 2005.

    46. [46]

      (46) Hu, S. W.; Wang, Y.; Wang, X. Y.; Chu, T. W.; Liu, X. Q. 2003, 107, 2954.  

  • 加载中
    1. [1]

      Weicheng FengJingcheng YuYilan YangYige GuoGeng ZouXiaoju LiuZhou ChenKun DongYuefeng SongGuoxiong WangXinhe Bao . Regulating the High Entropy Component of Double Perovskite for High-Temperature Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(6): 2306013-0. doi: 10.3866/PKU.WHXB202306013

    2. [2]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    3. [3]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    4. [4]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    5. [5]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    6. [6]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    7. [7]

      Lele FengXueying BaiJifeng PangHongchen CaoXiaoyan LiuWenhao LuoXiaofeng YangPengfei WuMingyuan Zheng . Single-atom Pd boosted Cu catalysts for ethanol dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(9): 100100-0. doi: 10.1016/j.actphy.2025.100100

    8. [8]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    9. [9]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    10. [10]

      Zhi Chai Huashan Huang Xukai Shi Yujing Lan Zhentao Yuan Hong Yan . Wittig反应的立体选择性. University Chemistry, 2025, 40(8): 192-201. doi: 10.12461/PKU.DXHX202410046

    11. [11]

      Bolin Sun Jie Chen Ling Zhou . 乙烯型卤代烃的亲核取代反应. University Chemistry, 2025, 40(8): 152-157. doi: 10.12461/PKU.DXHX202410032

    12. [12]

      Guowen Xing Guangjian Liu Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058

    13. [13]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    14. [14]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    15. [15]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    16. [16]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    17. [17]

      Xuefei Zhao Xuhong Hu Zhenhua Jia . 理论与计算化学在傅-克烷基化反应教学中的应用. University Chemistry, 2025, 40(8): 360-367. doi: 10.12461/PKU.DXHX202410008

    18. [18]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    19. [19]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    20. [20]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

Metrics
  • PDF Downloads(800)
  • Abstract views(2699)
  • HTML views(58)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return