Citation: JIANG Qian, CHU Wei, SUN Wen-Jing, LIU Feng-Si, XUE Ying. A DFT Study of Methane Adsorption on Nitrogen-Containing Organic Heterocycles[J]. Acta Physico-Chimica Sinica, ;2012, 28(05): 1101-1106. doi: 10.3866/PKU.WHXB201203054 shu

A DFT Study of Methane Adsorption on Nitrogen-Containing Organic Heterocycles

  • Received Date: 5 January 2012
    Available Online: 5 March 2012

    Fund Project: 国家重点基础研究发展规划项目(973) (2011CB201202)资助 (973) (2011CB201202)

  • In coal, nitrogen exists in a variety of forms. We presented 11 compounds of different hybridization forms and nitrogen contents. Density functional theory (DFT) simulation method was employed to study the adsorption behaviors of methane on these nitrogen-containing organic compounds. The interactions were studied and characterized by their adsorption energies, Mulliken charges and electrostatic potential surfaces. The adsorption energies varied from 3.81 to 6.82 kJ·mol-1, attributable to the weak hydrogen-bonding and electrostatic interactions. The results revealed that the adsorption energy of sp2-N with methane was higher than that of sp3-N and that higher nitrogen contents provided more positive sites for methane adsorption.
  • 加载中
    1. [1]

      (1) Hamelinck, C. N.; Faaij, A. P. C.; Turkenburg, W. C.; van Bergen, F.; Pagnier, H. J. M.; Barzandji, O. H. M.; Wolf, K. H. A. A.; Ruijg, G. J. Energy 2002, 27, 647.  

    2. [2]

      (2) Yu, H. G.; Zhou, G. Z.; Fan, W. T.; Ye, H. P. Int. J. Coal. Geol. 2007, 71, 345.  

    3. [3]

      (3) Wei, X. R.; Wang, G. X.; Massarotto, P.; lding, S. D.; Rudolph, V. Chem. Eng. Sci. 2007, 62, 4193.  

    4. [4]

      (4) Van Bergen, F.; Gale, J.; Damen, K. J.; Wildenborg, A. F. B. Energy 2004, 29, 1611.  

    5. [5]

      (5) Van Bergen, F.; Pagnier, H. J. M.; Krooss, B. M.; Van Der Meer, L. G. H. Greenhouse Gas Control Technologies 2001, 555.  

    6. [6]

      (6) Skhonde, M. P.; Strydom, C. A.; Bunt, J. R.; Schobert, H. H. J. Anal. Appl. Pyrol. 2011, 91, 205.  

    7. [7]

      (7) Kurniawan, Y.; Bhatia, S. K.; Rudolph, V. AICHE J. 2006, 52, 957.  

    8. [8]

      (8) Liu, Y. Y.; Wilcox, J. Environ. Sci. Technol. 2011, 45, 809.  

    9. [9]

      (9) Jiang, W. P.; Cui, Y. J.; Zhang, Q.; Zhong, L. W.; Li, Y. H.; Journal of China Coal Society 2007, 32, 292.

    10. [10]

      (10) Jiang, W. P. China Coalbed Methane 2009, 6, 19.

    11. [11]

      (11) Meng, H. P.; Zhao, W.; Zhang, R. G.; Wang, B. J. Coal Conversion 2008, 31, 31.

    12. [12]

      (12) Knicker, H.; Hatcher, P. G.; Scaroni, A. W. International Journal of Coal Geology 1996, 32, 255.  

    13. [13]

      (13) Wu, D. S.; Lei, J.; Zheng, B. S.; Tang, X. Y.; Wang, M. S.; Hu, J.; Li, S. H.; Wang, B. B.; Finkelman, R. B. Chin. J. Geochem. 2011, 30, 248.  

    14. [14]

      (14) Burchill, P.; Welch, L.S. Fuel 1989, 68, 100.  

    15. [15]

      (15) Boudou, J.; Schimmelmann, A.; Ader, M.; Mastalerz, M.; Sebilo, M.; Gengembre, L. Geochim Cosmochim Ac 2008, 72, 1199.  

    16. [16]

      (16) Valentim, B.; Guedes, A.; Rodrigues, S.; Flores, D. International Journal of Coal Geology 2011, 86, 291.  

    17. [17]

      (17) Perdew, J. P. ; Levy, M. Phys. Rev. B 1997, 56, 16021.  

    18. [18]

      (18) Sun, W. J.; Chu, W.; Yu, L. J.; Jiang, C. F. Chin. J Chem. Phys. 2010, 23, 175.  

    19. [19]

      (19) Zhang, X.; Chu, W.; Chen, J. J.; Dai, X. Y. Acta Phys. -Chim. Sin. 2009, 23, 451. [张旭, 储伟, 陈建钧, 戴晓雁. 物理化学学报, 2009, 23, 451.]

    20. [20]

      (20) Wang, Z. Q.; Sun, W. J.; Chu, W.; Yu, L. J. Acta Phys. -Chim.Sin. 2011, 27, 322. [王志强, 孙文晶, 储伟, 余良军. 物理化学学报, 2011, 27, 322.]

    21. [21]

      (21) Delley, B. J. Chem. Phys. 1990, 92, 508.

    22. [22]

      (22) Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A. ; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Phys. Rev. B 1992, 46, 6671.  

    23. [23]

      (23) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys Rev Lett 1996, 77, 3865.  

    24. [24]

      (24) Vogiatzis, K. D.; Mavrandonakis, A.; Klopper, W.; Froudakis, G. E. ChemPhysChem 2009, 10, 374.  

    25. [25]

      (25) Thierfelder, C.; Witte, M.; Blankenburg, S.; Rauls, E.; Schmidt, W. G. Surf. Sci. 2011, 605, 746.  

    26. [26]

      (26) Mullins, O. C.; Kirtley, S. M.; Elp, J. V.; Cramer, S. P. Applied Spectroscopy 1993, 47, 1268.  

    27. [27]

      (27) Deng, D.; Pan, X.; Yu, L. ; Cui, Y.; Jiang, Y.; Qi, J.; Li, W. X.; Fu, Q.; Ma, X.; Xue, Q.; Sun, G.; Bao, X. Chem. Mater. 2011, 23, 1188.  

  • 加载中
    1. [1]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    2. [2]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

    3. [3]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    4. [4]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    5. [5]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    6. [6]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    7. [7]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    8. [8]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    9. [9]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    10. [10]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    11. [11]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    12. [12]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    13. [13]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    14. [14]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    15. [15]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    16. [16]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    17. [17]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    18. [18]

      Ying Xiong Guangao Yu Lin Wu Qingwen Liu Houjin Li Shuanglian Cai Zhanxiang Liu Xingwen Sun Yuan Zheng Jie Han Xin Du Chengshan Yuan Qihan Zhang Jianrong Zhang Shuyong Zhang . Basic Operations and Specification Suggestions for Determination of Physical Constants of Organic Compounds. University Chemistry, 2025, 40(5): 106-121. doi: 10.12461/PKU.DXHX202503079

    19. [19]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    20. [20]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

Metrics
  • PDF Downloads(824)
  • Abstract views(3495)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return