Citation: ZHANG Zhe, QI Zhi-Mei, ZHANG Rong-Jun. Direct Electrochemistry of Cytochrome c Adlayer on the ITO Electrode[J]. Acta Physico-Chimica Sinica, ;2012, 28(05): 1163-1168. doi: 10.3866/PKU.WHXB201202241 shu

Direct Electrochemistry of Cytochrome c Adlayer on the ITO Electrode

  • Received Date: 2 December 2011
    Available Online: 24 February 2012

    Fund Project: 国家重点基础研究发展规划项目(973) (2009CB320300) (973) (2009CB320300) 国家自然科学基金(60978042, 61078039) (60978042, 61078039)

  • The electrochemical redox reaction of a cytochrome c (Cyt c) adlayer on an indium tin oxide (ITO) electrode was directly monitored and the surface concentrations of Cyt c versus solution concentrations were obtained from cyclic voltammograms. The results indicate that the surface concentration increases from 0.35 × 10-12 to 1.53 × 10-12 mol·cm-2 when the solution concentration is increased from 2 to 10 μmol ·L-1. A quasi-linear relationship between the reciprocals of surface concentration and solution concentration was observed, indicating that Cyt c adsorption on the ITO electrode closely obeys the Langmuir isothermal adsorption model. The cyclic voltammograms of the Cyt c solutions with the ITO electrode reveal that both adsorbed and dissociated Cyt c molecules are involved in the electrode reaction and that the contribution of dissociated molecules is much larger than that of adsorbed ones. The electrode reaction is basically diffusion controlled and quasi-reversible. Based on the Nicholson method, the average standard heterogeneous rate constant was determined to be 1.65×10-3 cm· s-1. The electrochemical activity of the Cyt c adlayer was partially lost when it was kept at 25 °C for 1 h, and was completely lost at 80 °C. The denatured Cyt c adlayer on a ld electrode can effectively inhibit the electrode reaction of K3Fe(CN)6 solution.
  • 加载中
    1. [1]

      (1) Eddowes, M. J.; Hill, H. A. O. J. Chem. Soc. Chem. Commun. 1977, No. 21, 771.

    2. [2]

      (2) Eddowes, M. J.; Hill, H. A. O. J. Am. Chem. Soc. 1979, 101, 4461.  

    3. [3]

      (3) Ji, X.; Jin, B. K.; Jin, J.; Nakamura, T. J. Electroanal. Chem. 2006, 590, 173.  

    4. [4]

      (4) Ding, X. Q.; Yang, M.; Hu, J. B.; Li, Q. L.; McDougall, A. Microchim. Acta 2007, 158, 65.  

    5. [5]

      (5) Wang, J. L.;Wang, F. A.; Xu, Z. A.;Wang, Y. Z.; Dong, S. J. Talanta 2007, 74, 104.  

    6. [6]

      (6) Wang, L.;Wang, E. K. Electrochem. Commun. 2004, 6, 49.  

    7. [7]

      (7) Jiang, X.; Zhang, Z. L.; Bai, H. Y.; Qu, X. H.; Jiang, J. G.; Wang, E. K.; Dong, S. J. Spectrochimica Acta Part A 2005, 61, 943.  

    8. [8]

      (8) Liang, M. S.; Bai, Y.; Liu, M.; Zheng,W. J. Acta Phys. -Chim. Sin. 2009, 25, 457. [梁敏思, 白燕, 刘敏, 郑文杰. 物理化学学报, 2009, 25, 457.]

    9. [9]

      (9) Tai, Y. H.; Zhou, L. H.;Wang, Y.; Ma, L.;Wang, S. T. Journal of Northeast Normal University 2010, 42, 93. [泰玉华, 周立恒, 王岩, 马丽, 王胜天. 东北师大学报, 2010, 42, 93.]

    10. [10]

      (10) Wang, Q.; Li, N. Q. Electroanalysis 2001, 13, 1375.  

    11. [11]

      (11) Ion, A.; Banica, F. J. Solid State Electrochem. 2001, 5, 431.  

    12. [12]

      (12) Runge, A. F.; Saavedra, S. S. Langmuir 2003, 19, 9418.  

    13. [13]

      (13) Liu, H. H.; Lu, J. L.; Zhang, M.; Pang, D.W.; Abruna, H. D. J. Electroanal. Chem. 2003, 554, 93.

    14. [14]

      (14) McKenzie, K. J.; Marken, F.; Opallo, M. Bioelectrochemistry 2005, 66, 41.  

    15. [15]

      (15) Zhao, Q.; Zhuang, Q. K. Chin. Chem. Lett. 2005, 16, 1237.

    16. [16]

      (16) Ding, X. Q.; Li, J. H.; Hu, J. B.; Li, Q. L. Anal. Biochem. 2005, 339, 46.  

    17. [17]

      (17) Gu, R. A.; Qiao, Z. H.; Qu, X. G.; Lu, T. H.; Dong, S. J. Acta Phys. -Chim. Sin. 1996, 12, 654. [顾仁敖, 乔专虹, 曲晓刚, 陆天虹, 董绍俊. 物理化学学报, 1996, 12, 654.]

    18. [18]

      (18) Qu, X. G.; Sun, G. Q.; Yang, H.; Lu, T. H. Electrochemistry 1998, 4, 260. [曲晓刚, 孙公权, 杨辉, 陆天虹. 电化学, 1998, 4, 260.]

    19. [19]

      (19) Li, J. H.; Cheng, G. J.; Dong, S. J. Chemical Research in Chinese University 1998, 14, 17.

    20. [20]

      (20) Zhang, R. J.; Yin, Q. F.; Xu, J. M.; Zhu, Y. L.; Ma, K. R. Chemical Reagents 2010, 32, 577. [张瑞娟, 尹起范, 徐继明, 朱玉兰, 马奎荣. 化学试剂, 2010, 32, 577.]

    21. [21]

      (21) Xu, J. M.; Zhang, R. J.; Song, J.; Yin, Q. F.; Zhong, H. Chemical Research and Application 2010, 22, 1236. [徐继明, 张瑞娟, 宋洁, 尹起范, 仲慧. 化学研究与应用, 2010, 22, 1236.]

    22. [22]

      (22) Wang, Y.; Qian, K.; Guo, K.; Kong, J. L.; Marty, J. L.; Yu, C. Z.; Liu, B. H. Microchim. Acta 2011, 175, 87.  

    23. [23]

      (23) Kasmi, A. E.; Leopold, M. C.; Galligan, R.; Robertson, R. T.; Saavedra, S. S.; Kacami, K. E.; Bowden, E. F. Electrochem. Commun. 2002, 4, 177.  

    24. [24]

      (24) Shie, J.W.; Yogeswaran, U.; Chen, S. M. Talanta 2008, 74, 1659.  

    25. [25]

      (25) Matsuda, N.; Santos, J. H.; Takatsu, A.; Kato, K. Thin Solid Films 2003, 438-439, 403.  

    26. [26]

      (26) Li, S. Q.; Xia, J.; Liu, C. Y.; Cao,W.; Hu, J. B.; Li, Q. L. J. Electroanal. Chem. 2009, 633, 273.  

    27. [27]

      (27) Yan, J.; Li, J. J.; Zhang, B.; Cai, S. M. Acta Phys. -Chim. Sin. 2001, 17, 1126. [严捷, 李经建, 张波, 蔡生民. 物理化学学报, 2001, 17, 1126.]

    28. [28]

      (28) Renault, C.; Harris, K. D.; Brett, M. J. Chem. Commun. 2011, 47, 1863.  

    29. [29]

      (29) Lee, I.; Lee, S. Y. J. Phys. Chem. C 2009, 113, 17372.  

    30. [30]

      (30) Laviron, E. J. Electroanal. Chem. 1979, 100, 263.  

    31. [31]

      (31) Bard, A. J.; Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications, 2nd ed.; JohnWiley & Sons, Inc.: Hoboken, 2001; pp 231-232, 239-243, 590-595.  

    32. [32]

      (32) Nicholson, R. S. Anal. Chem. 1965, 37, 1351.  

  • 加载中
    1. [1]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    2. [2]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    3. [3]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    4. [4]

      Ruilin Han Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023

    5. [5]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012

    6. [6]

      Kexin YanZhaoqi YeLingtao KongHe LiXue YangYahong ZhangHongbin ZhangYi Tang . Seed-Induced Synthesis of Disc-Cluster Zeolite L Mesocrystals with Ultrashort c-Axis: Morphology Control, Decoupled Mechanism, and Enhanced Adsorption. Acta Physico-Chimica Sinica, 2024, 40(9): 2308019-0. doi: 10.3866/PKU.WHXB202308019

    7. [7]

      Dong XiangKunzhen LiKanghua MiaoRan LongYujie XiongXiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027

    8. [8]

      Hong Yan Wenfeng Wang Keyin Ye Yaofeng Yuan . Organic Electrochemistry and Its Integration into Chemistry Teaching. University Chemistry, 2025, 40(5): 301-310. doi: 10.12461/PKU.DXHX202407027

    9. [9]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    10. [10]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    11. [11]

      Shuhui Li Xucen Wang Yingming Pan . Exploring the Role of Electrochemical Technologies in Everyday Life. University Chemistry, 2025, 40(3): 302-307. doi: 10.12461/PKU.DXHX202406059

    12. [12]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    13. [13]

      Hui WangAbdelkader LabidiMenghan RenFeroz ShaikChuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039

    14. [14]

      Shasha Ma Zujin Yang Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008

    15. [15]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    16. [16]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    17. [17]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    18. [18]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    19. [19]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    20. [20]

      Yang ZHOULili YANWenjuan ZHANGPinhua RAO . Thermal regeneration of biogas residue biochar and the ammonia nitrogen adsorption properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1574-1588. doi: 10.11862/CJIC.20250032

Metrics
  • PDF Downloads(952)
  • Abstract views(2606)
  • HTML views(16)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return