Citation: ZHAO Jian-Xi, YANG Duo-Ping. Highly Viscoelastic Worm-Like Micelle Solution of Sodium Hexadecyl Sulfate Induced by Bolaform Counterions[J]. Acta Physico-Chimica Sinica, ;2012, 28(05): 1218-1222. doi: 10.3866/PKU.WHXB201202211 shu

Highly Viscoelastic Worm-Like Micelle Solution of Sodium Hexadecyl Sulfate Induced by Bolaform Counterions

  • Received Date: 16 November 2011
    Available Online: 21 February 2012

    Fund Project: 国家自然科学基金(20673021, 20873024) (20673021, 20873024)福建省自然科学基金(2010J01038)资助项目 (2010J01038)

  • The rheological behaviors of mixed aqueous solutions of sodium hexadecyl sulfate (SHS) and a bolaform salt, either N,N'-ethanediyl-α,ω-bis(ethyldimethylammonium bromide) (Bola2Et) or N,N'- propanediyl-α,ω-bis(trimethylammonium bromide) (Bola4), were investigated by steady-state and frequency-sweep measurements. The results showed that long worm-like micelles were formed in both systems at 45 °C, and the solutions exhibited high viscoelasticities, especially the SHS/Bola2Et system in which the solution had very high elasticity. The zero-shear viscosity of SHS/Bola2Et was as high as 2520 Pa·s, and the system was gel-like. These results were attributed to the formation of 2:1 complexes by electrostatic attraction. Since the spacers of both Bola counterions were shorter than the distance between quaternary ammonium ions under electrostatic equilibrium, the generated complex in shape favored formation of worm-like micelles. In comparison, it was difficult to induce SHS to form worm-like micelles by the addition of tetramethylammonium counterions, and the solution exhibited low viscosity.
  • 加载中
    1. [1]

      (1) Dreiss, C. A. Soft Matter 2007, 3, 956 and references therein.  

    2. [2]

      (2) Ezrahi, S.; Tuval, E.; Aserin, A. Adv. Colloid Interface Sci. 2006, 128-130, 77 and references therein.  

    3. [3]

      (3) Trickett, K.; Eastoe, J. Adv. Colloid Interface Sci. 2008, 144, 66 and references therein.  

    4. [4]

      (4) Shikata, T.; Hirata, H. Langmuir 1987, 3, 1081.  

    5. [5]

      (5) Shikata, T.; Hirata, H.; Kotaka, T. Langmuir 1988, 4, 354.  

    6. [6]

      (6) Makhloufi, R.; Hirsch, E.; Candau, S. J.; Binana-Limbele,W.; Zana, R. J. Phys. Chem. 1989, 93, 8095.  

    7. [7]

      (7) Ali, A. A.; Makhloufi, R. Phys. Rev. E 1997, 56, 4474.  

    8. [8]

      (8) Ali, A. A.; Makhloufi, R. Colloid Polym. Sci. 1999, 277, 270.  

    9. [9]

      (9) Clausen, T. M.; Vinson, P. K.; Minter, J. R.; Davis, H. T.; Talmon, Y.; Miller,W. G. J. Phys. Chem. 1992, 96, 474.  

    10. [10]

      (10) Aswal, V. K.; yal, P. S.; Thiyagarajan, P. J. Phys. Chem. B 1998, 102, 2469.  

    11. [11]

      (11) Soltero, J. F. A.; Puig, J. E.; Manero, O. Langmuir 1996, 12, 2654.  

    12. [12]

      (12) Maitland, G. C. Curr. Opin. Colloid Interface Sci. 2000, 5, 301.  

    13. [13]

      (13) (a) Magid, L. J.; Li, Z.; Butler, P. D. Langmuir 2000, 16, 10028. (b) Arleth, L.; Bergström, M.; Pedersen, J. S. Langmuir 2002, 18, 5343.  

    14. [14]

      (14) (a) Mu, J. H.; Li, G. Z. Colloid Polym. Sci. 2001, 279, 872. (b) Mu, J. H.; Li, G. Z.;Wang, Z.W. Rheol. Acta 2002, 41, 493. (c) Mu, J. H.; Li, G. Z.; Jia, X. L.;Wang, H. X.; Zhang, G. Y. J. Phys. Chem. B 2002, 106, 11685. (d) Mu, J. H.; Li, G. Z. Chem. Phys. Lett. 2001, 345, 100.  

    15. [15]

      (15) Kalur, G. C.; Raghavan, S. R. J. Phys. Chem. B 2005, 109, 8599.  

    16. [16]

      (16) Menger, F. M.; Littau, C. A. J. Am. Chem. Soc. 1993, 113, 1451.

    17. [17]

      (17) Kern, F.; Lequeux, F.; Zana, R.; Candau, S. J. Langmuir 1994, 10, 1714.  

    18. [18]

      (18) Danino, D.; Talmon, Y.; Zana, R. Langmuir 1995, 11, 1448.  

    19. [19]

      (19) Oda, R.; Huc, I.; Homo, J. C.; Heinrich, B.; Schmutz, M.; Candau, S. Langmuir 1999, 15, 2384.  

    20. [20]

      (20) Moroi, Y.; Matuura, R.; Kuwamura, T.; Inokuma, S. J. Colloid Interface Sci. 1986, 113, 225.  

    21. [21]

      (21) Moroi, Y.; Murata, Y.; Fukuda, Y.; Kido, Y.; Seto,W.; Tanaka, M. J. Phys. Chem. 1992, 96, 8610.  

    22. [22]

      (22) Moroi, Y.; Matuura, R.; Tanaka, M.; Murata, Y.; Aikawa, Y.; Furutani, E.; Kuwamura, T.; Takahashi, H.; Inokuma, S. J. Phys. Chem. 1990, 94, 842.  

    23. [23]

      (23) Yang, D. P.; Zhao, J. X. Colloids Surf. A submitted.  

    24. [24]

      (24) Nlshikldo, N.; Kobayashl, H.; Tanaka, M. J. Phys. Chem. 1982, 86, 3170.  

    25. [25]

      (25) Shrestha, R. G.; Shrestha, L. K.; Aramaki, K. J. Colloid Interface Sci. 2007, 311, 276.  

    26. [26]

      (26) Pei, X. M.; Zhao, J. X.; Ye, Y. Z.; You, Y.;Wei, X. L. Soft Matter 2011, 7, 2953.  

    27. [27]

      (27) Pei, X. M.; Zhao, J. X.;Wei, X. L. J. Colloid Interface Sci. 2011, 356, 176.  

    28. [28]

      (28) Raghavan, S. R.; Kaler, E.W. Langmuir 2001, 17, 300.  

    29. [29]

      (29) Israelachvili, J. Intermolecular & Surface Forces Second Edition; Academic Press: San Die , 1992; pp 370-382.

    30. [30]

      (30) Alami, E.; Beinert, G.; Marie, P.; Zana, R. Langmuir 1993, 9, 1465.  

    31. [31]

      (31) Wettig, S. D.; Verrall, R. E. J. Colloid Interface Sci. 2001, 235, 310.  

    32. [32]

      (32) Tanford, C. J. Phys. Chem. 1972, 76, 3020.  

    33. [33]

      (33) Granek, R.; Cates, M. E. J. Chem. Phys. 1992, 96, 4758.  

    34. [34]

      (34) Cates, M. E. Macromolecules 1987, 20, 2289.  

    35. [35]

      (35) Khatory, A.; Lequeux, F.; Kern, F.; Candau, S. J. Langumir 1993, 9, 1456.  

    36. [36]

      (36) Oda, R.; Narayanan, J.; Hassan, P. A.; Manohar, C.; Salkar, R. A.; Kern, F.; Candau, S. J. Langmuir 1998, 14, 4364.  

    37. [37]

      (37) Granek, R.; Cates, M. E. J. Chem. Phys. 1992, 96, 4758.  

    38. [38]

      (38) Acharya, D. P.; Kunieda, H.; Shiba, Y.; Aratani, K. J. Phys. Chem. B 2004, 108, 1790.

  • 加载中
    1. [1]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    2. [2]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    3. [3]

      Zilin HuYaoshen NiuXiaohui RongYongsheng Hu . Suppression of Voltage Decay through Ni3+ Barrier in Anionic-Redox Active Cathode for Na-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306005-0. doi: 10.3866/PKU.WHXB202306005

    4. [4]

      Aoyu HuangJun XuYu HuangGui ChuMao WangLili WangYongqi SunZhen JiangXiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2408007-0. doi: 10.3866/PKU.WHXB202408007

    5. [5]

      Jiandong LiuXin LiDaxiong WuHuaping WangJunda HuangJianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, 2024, 40(6): 2306039-0. doi: 10.3866/PKU.WHXB202306039

    6. [6]

      Yuyao WangZhitao CaoZeyu DuXinxin CaoShuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2406014-0. doi: 10.3866/PKU.WHXB202406014

    7. [7]

      Shanghua LiMalin LiXiwen ChiXin YinZhaodi LuoJihong Yu . High-Stable Aqueous Zinc Metal Anodes Enabled by an Oriented ZnQ Zeolite Protective Layer with Facile Ion Migration Kinetics. Acta Physico-Chimica Sinica, 2025, 41(1): 100003-0. doi: 10.3866/PKU.WHXB202309003

    8. [8]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    9. [9]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

    10. [10]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    11. [11]

      Yanxi LIUMengjia XUHaonan CHENQuan LIUYuming ZHANG . A fluorescent-colorimetric probe for peroxynitrite-anion-imaging in living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1112-1122. doi: 10.11862/CJIC.20240423

    12. [12]

      Jingshuo ZhangYue ZhaiZiyun ZhaoJiaxing HeWei WeiJing XiaoShichao WuQuan-Hong Yang . Research Progress of Functional Binders in Silicon-Based Anodes for Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306006-0. doi: 10.3866/PKU.WHXB202306006

    13. [13]

      Jingkun YuXue YongAng CaoSiyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015

    14. [14]

      Qing XueShengyi LiYanan ZhaoPeng ShengLi XuZhengxi LiBo ZhangHui LiBo WangLibin YangYuliang CaoZhongxue Chen . Novel Alkaline Sodium-Ion Battery Capacitor Based on Active Carbon||Na0.44MnO2 towards Low Cost, High-Rate Capability and Long-Term Lifespan. Acta Physico-Chimica Sinica, 2024, 40(2): 2303041-0. doi: 10.3866/PKU.WHXB202303041

    15. [15]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    16. [16]

      Qianli MaTianbing SongTianle HeXirong ZhangHuanming Xiong . Sulfur-doped carbon dots: a novel bifunctional electrolyte additive for high-performance aqueous zinc-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100106-0. doi: 10.1016/j.actphy.2025.100106

    17. [17]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    18. [18]

      Guoze YanBin ZuoShaoqing LiuTao WangRuoyu WangJinyang BaoZhongzhou ZhaoFeifei ChuZhengtong LiYamauchi YusukeMelhi SaadXingtao Xu . Opportunities and Challenges of Capacitive Deionization for Uranium Extraction from Seawater. Acta Physico-Chimica Sinica, 2025, 41(4): 2404006-0. doi: 10.3866/PKU.WHXB202404006

    19. [19]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    20. [20]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

Metrics
  • PDF Downloads(804)
  • Abstract views(2263)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return