Citation: SUN Xian-Zhong, ZHANG Xiong, ZHANG Da-Cheng, MA Yan-Wei. Activated Carbon-Based Supercapacitors Using Li2SO4 Aqueous Electrolyte[J]. Acta Physico-Chimica Sinica, ;2012, 28(02): 367-372. doi: 10.3866/PKU.WHXB201112131 shu

Activated Carbon-Based Supercapacitors Using Li2SO4 Aqueous Electrolyte

  • Received Date: 11 October 2011
    Available Online: 13 December 2011

    Fund Project: 中国科学院知识创新工程重要方向项目(KJCX2-YW-W26) (KJCX2-YW-W26) 北京市科技计划项目( Z111100056011007) ( Z111100056011007)国家自然科学基金(21001103,51025726)资助 (21001103,51025726)

  • In this work, we prepared activated carbon-based symmetric supercapacitors using Li2SO4 aqueous electrolyte instead of H2SO4 and KOH, and obtained devices with an improved working voltage of 1.6 V from 1.0 V. Cyclic voltammetry and galvanostatic charging/discharging measurements were used to study the electrochemical properties. The results showed that the electrode specific capacitance can reach 129 F·g-1, and the energy density can be as high as 10 Wh·kg-1 at a power density of 160 Wh·kg-1. Electrochemical impedance analysis measurements showed that the charge-transfer resistance of the capacitors decreased markedly with the increase of the concentration of Li2SO4, and the rate capability improved accordingly. The leakage current of the supercapacitor was 0.22 mA after constant-voltage charging at 1.6 V for 1 h, and the columbic efficiency was nearly 100%. The capacitance of the supercapacitor remained above 90% after 5000 charge-discharge cycles. Activated carbon-based supercapacitors using Li2SO4 aqueous electrolyte have many advantages, such as high working voltage, high energy density, and environmental compatibility, and therefore have od industrialization prospects.
  • 加载中
    1. [1]

      (1) Miller, J. R.; Simon, P. Science 2008, 321, 651.  

    2. [2]

      (2) Ji, Q. Q.; Guo, P. Z.; Zhao, X. S. Acta Phys. -Chim. Sin. 2010, 26, 1254. [季倩倩, 郭培志, 赵修松. 物理化学学报, 2010, 26, 1254.]

    3. [3]

      (3) Zhu, Y.; Murali, S.; Stoller, M. D.; Ganesh, K. J.; Cai,W.; Ferreira, P. J.; Pirkle, A.;Wallace, R. M.; Cychosz, K. A.; Thommes, M.; Su, D.; Stach, E. A.; Ruoff, R. S. Science 2011, 332, 1537.  

    4. [4]

      (4) Simon, P.; tsi, Y. Nat. Mater. 2008, 7, 845.  

    5. [5]

      (5) Chen, Y.; Zhang, X.; Yu, P.; Ma, Y.W. J. Power Sources 2010, 195, 3031.  

    6. [6]

      (6) Chen, Y.; Zhang, X.; Zhang, D. C.; Yu, P.; Ma, Y.W. Carbon 2011, 49, 573.  

    7. [7]

      (7) Zhang, D. C.; Zhang, X.; Chen, Y.; Yu, P.;Wang, C. H.; Ma, Y. W. J. Power Sources 2011, 196, 5990.  

    8. [8]

      (8) Yu, L. Q.; Chen, S. L.; Chang, S.; Li, Y. H.; Gao, Y. Y.;Wang, G. L.; Cao, D. X. Acta Phys. -Chim. Sin. 2011, 27, 615. [于丽秋, 陈书礼, 常莎, 李云虎, 高胤义, 王贵领, 曹殿学. 物理化学学报, 2011, 27, 615.]

    9. [9]

      (9) Wang, H.; Gao, Q.; Jiang, L. Small 2011, 7, 2454.

    10. [10]

      (10) Lu, X. H.; Zheng, D. Z.; Zhai, T.; Liu, Z. Q.; Huang, Y. Y.; Xie, S. L.; Tong, Y. X. Energ. Environ. Sci. 2011, 4, 2915.  

    11. [11]

      (11) Xu, B.; Zhang, H.; Cao, G. P.; Zhang,W. F.; Yang, Y. S. Prog. Chem. 2011, 23, 605.

    12. [12]

      (12) Xu, B.; Yue, S. F.; Sui, Z. Y.; Zhang, X. T.; Hou, S. S.; Cao, G. P.; Yang, Y. S. Energ. Environ. Sci. 2011, 4, 2826.  

    13. [13]

      (13) Lin, P.; She, Q. J.; Hong, B. L.; Liu, X. A. J.; Shi, Y. N.; Shi, Z.; Zheng, M. S.; Dong, Q. F. J. Electrochem. Soc. 2010, 157, A818.

    14. [14]

      (14) Deng, L.; Zhu, G.;Wang, J.; Kang, L.; Liu, Z. H.; Yang, Z.; Wang, Z. J. Power Sources doi: 10.1016/j.jpowsour. 2011.09.005.

    15. [15]

      (15) Li,W. C.; Gao, P. C.; Lu, A. H. J. Power Sources 2011, 196, 4095.  

    16. [16]

      (16) Brezesinski, T.;Wang, J.; Tolbert, S. H.; Dunn, B. Nat. Mater. 2010, 9, 146.  

    17. [17]

      (17) Tang,W.; Liu, L.; Tian, S.; Li, L.; Yue, Y.;Wu, Y.; Zhu, K. Chem. Commun. 2011, 47, 10058.  

    18. [18]

      (18) Hu, G. X.; Li, C. X.; ng, H. J. Power Sources 2010, 195, 6977.  

    19. [19]

      (19) Wen, Z. B.; Tian, S.; Qu, Q. T.;Wu, Y. P. Prog. Chem. 2011, 23, 589. [温祖标, 田舒, 曲群婷, 吴宇平. 化学进展, 2011, 23, 589.]

    20. [20]

      (20) Li, J. M.; Chang, K. H.; Hu, C. C. Electrochem. Commun. 2010, 12, 1800.  

    21. [21]

      (21) Lin, Y. P.;Wu, N. L. J. Power Sources 2011, 196, 851.  

    22. [22]

      (22) Mosqueda, H. A.; Crosnier, O.; Athouel, L.; Dandeville, Y.; Scudeller, Y.; Guillemet, P.; Schleich, D. M.; Brousse, T. Electrochim. Acta 2010, 55, 7479.  

    23. [23]

      (23) Zhang, X.; Yang,W. S.; Ma, Y.W. Electrochem. Solid. St. 2009, 12, A95.

    24. [24]

      (24) Qu, Q. T.;Wang, B.; Yang, L. C.; Shi, Y.; Tian, S.;Wu, Y. P. Electrochem. Commun. 2008, 10, 1652.  

    25. [25]

      (25) Demarconnay, L.; Raymundo-Piñ?ero, E.; Béguin, F. Electrochem. Commun. 2010, 12, 1275.  

    26. [26]

      (26) Béguin, F.; Jurewicz, K.; Frackowiak, E. Appl. Phys. A 2004, 78, 981.  

    27. [27]

      (27) Khomenko, V.; Raymundo-Pin?ero, E.; Béguin, F. J. Power Sources 2010, 195, 4234.  

    28. [28]

      (28) Xu, C.; Du, H.; Li, B.; Kang, F.; Zeng, Y. J. Electrochem. Soc. 2009, 156, A435.

    29. [29]

      (29) Li, J.; Lai, Y. Q.; Jin, X. D.; Peng, R. F.; Liu, Y. X. Chinese Battery Industry 2010, 15, 131. [李晶, 赖延清, 金旭东, 彭汝芳, 刘业翔. 电池工业, 2010, 15, 131.]

  • 加载中
    1. [1]

      Qiqi Li Su Zhang Yuting Jiang Linna Zhu Nannan Guo Jing Zhang Yutong Li Tong Wei Zhuangjun Fan . 前驱体机械压实制备高密度活性炭及其致密电容储能性能. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-. doi: 10.3866/PKU.WHXB202406009

    2. [2]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    3. [3]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    4. [4]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    5. [5]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    6. [6]

      Huayan Liu Yifei Chen Mengzhao Yang Jiajun Gu . Strategies for enhancing capacity and rate performance of two-dimensional material-based supercapacitors. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-. doi: 10.1016/j.actphy.2025.100063

    7. [7]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    8. [8]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    9. [9]

      Min LUOXiaonan WANGYaqin ZHANGTian PANGFuzhi LIPu SHI . Porous spherical MnCo2S4 as high-performance electrode material for hybrid supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 413-424. doi: 10.11862/CJIC.20240205

    10. [10]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    11. [11]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    12. [12]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    13. [13]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    14. [14]

      Jun Huang Pengfei Nie Yongchao Lu Jiayang Li Yiwen Wang Jianyun Liu . Efficient adsorption of hardness ions by a mordenite-loaded, nitrogen-doped porous carbon nanofiber cathode in capacitive deionization. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-. doi: 10.1016/j.actphy.2025.100066

    15. [15]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    16. [16]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    17. [17]

      Cuiwu MOGangmin ZHANGChao WUZhipeng HUANGChi ZHANG . A(NH2SO3) (A=Li, Na): Two ultraviolet transparent sulfamates exhibiting second harmonic generation response. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1387-1396. doi: 10.11862/CJIC.20240045

    18. [18]

      Shuangxi LiHuijun YuTianwei LanLiyi ShiDanhong ChengLupeng HanDengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240

    19. [19]

      Ziheng Zhuang Xiao Xu Kin Shing Chan . Superdrugs for Superbugs. University Chemistry, 2024, 39(9): 128-133. doi: 10.3866/PKU.DXHX202309040

    20. [20]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

Metrics
  • PDF Downloads(1451)
  • Abstract views(2644)
  • HTML views(20)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return