Citation: WU Xiao-Qin, ZONG Rui-Long, ZHU Yong-Fa. Enhanced MnO2 Nanorods to CO and Volatile Organic Compounds Oxidative Activity by Platinum Nanoparticles[J]. Acta Physico-Chimica Sinica, ;2012, 28(02): 437-444. doi: 10.3866/PKU.WHXB201112082 shu

Enhanced MnO2 Nanorods to CO and Volatile Organic Compounds Oxidative Activity by Platinum Nanoparticles

  • Received Date: 29 September 2011
    Available Online: 8 December 2011

    Fund Project: 国家自然科学基金(20925725) (20925725) 国家重点基础研究发展规划项目(973) (2007CB613303) (973) (2007CB613303)江西省教育厅科技项目(GJJ11507)资助 (GJJ11507)

  • Pure-phase α-MnO2 and δ-MnO2 nanorods were synthesized through an easy solution-based hydrothermal method. Platinum nanoparticles supported by the obtained MnO2 nanorods were prepared by the colloid deposition process. The microstructure and adsorption activity of the obtained catalysts were researched by different techniques such as transmission electron microscopy (TEM), powder X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), N2 adsorption-desorption measurements, and H2 temperature-programmed reduction (H2-TPR). The cataluminescence (CTL) properties of CO and volatile organic compounds (VOCs), such as benzene and toluene, on the resultant catalysts were explored. The results showed that the platinum nanoparticles were well distributed in α-MnO2 and δ-MnO2. In addition, the Pt load process does not affect the crystal phase structure of the α-MnO2 nanorods, but can generate structural changes in the δ-MnO2 nanorods. The phase transformation did not the result of the reaction between the δ-MnO2 nanorods and Pt as shown in the XPS study. The α-MnO2 and δ-MnO2 nanorods showed a high catalytic oxidative activity toward CO, benzene, and toluene, and δ-MnO2 showed a higher activity than the α-MnO2 phase. Although, the Pt load led to a decrease in the surface area of the MnO2 nanorods which was confirmed by the N2 adsorption-desorption measurements, but the H2-TPR results showed that the interaction between Pt and MnO2 was intense, which significantly enhanced its catalytic activity. The Pt/δ-MnO2 nanorods exhibited a higher activity than Pt/α-MnO2. CTL research showed that the activities of the four catalysts increased in the order of α-MnO2≤ δ-MnO2 < Pt/α-MnO2 < Pt/δ-MnO2, and the H2-TPR results were consistent. Pt loading significantly enhanced the catalytic oxidative activity of α-MnO2 and δ-MnO2 nanorods to CO, benzene, and toluene.
  • 加载中
    1. [1]

      (1) Amann, M.; Lutz, M. J. Hazard. Mater. 2000, 78, 41.  

    2. [2]

      (2) Li, N.; Gaillard, F. Appl. Catal. B: Environ. 2009, 88, 152.  

    3. [3]

      (3) Aguero, F. N.; Barbero, B. P.; Gambaro, L.; Cadús, L. E. Appl. Catal. B: Environ. 2009, 91, 108.  

    4. [4]

      (4) Li, Y.; Zhang, X.; He, H.; Yu, Y.; Yuan, T.; Tian, Z.;Wang, J.; Li, Y. Appl. Catal. B: Environ. 2009, 89, 659.  

    5. [5]

      (5) Gandhe, A. R.; Rebello, J. S.; Figueiredo, J. L.; Fernandes, J. B. Appl. Catal. B: Environ. 2007, 72, 129.  

    6. [6]

      (6) Liotta, L. F. Appl. Catal. B: Environmental. 2010, 100, 403.

    7. [7]

      (7) Li, H. F.; Lu, G. Z.; Dai, Q. G.;Wang, Y. Q.; Guo, Y.; Guo, Y. L. Appl. Catal. B: Environ. 2011, 102, 475.  

    8. [8]

      (8) Diehl, F.; Barbier, J. Jr,; Duprez, D.; Guibard, I.; Mabilon, G. Appl. Catal. B: Environ. 2010, 95, 217.  

    9. [9]

      (9) He, C.; Li, J.; Li, P.; Cheng, J.; Hao, Z.; Xu, Z. P. Appl. Catal. B: Environ. 2010, 96, 466.  

    10. [10]

      (10) Pitkäaho, S.; Ojala, S.; Maunula, T.; Savimäki, A.; Kinnunen, T.; Keiski, R. L. Appl. Catal. B: Environ. 2011, 102, 395.  

    11. [11]

      (11) Ousmane, M.; Liotta, L. F.; Carlo, G. D.; Pantaleo, G.; Venezia, A. M.; Deganello, G.; Retailleau, L.; Boreave, A.; Giroir- Fendler, A. Appl. Catal. B: Environ. 2011, 101, 629.  

    12. [12]

      (12) Kim, S. C. J. Hazard. Mater. B 2002, 91, 285.  

    13. [13]

      (13) Rivas, B.; López-Fonseca, R.; Gutiérrez-Ortiz, M.; Giérrez- Ortiz, J. I. Appl. Catal. B: Environ. 2011, 101, 317.  

    14. [14]

      (14) Wang, X.; Na, N.; Zhang, S. C.;Wu, Y. Y.; Zhang, X. L. J. Am. Chem. Soc. 2007, 129, 6062.  

    15. [15]

      (15) Comotti, M.; Li,W. C.; Spliethoff, B.; Schüth, F. J. Am. Chem. Soc. 2006, 128, 917.  

    16. [16]

      (16) Bulgan, G.; Zong, R. L.; Liang, S. H.; Yao,W. Q.; Zhu, Y. F. Acta Phys. -Chim. Sin. 2008, 24, 1547. [Bulgan G., 宗瑞隆, 梁淑惠, 姚文清, 朱永法. 物理化学学报, 2008, 24, 1547.]

    17. [17]

      (17) Zhang, C.; He, H. Catal. Today 2007, 126, 345.  

    18. [18]

      (18) Beauchet, R.; Mijoin, J.; Batonneau-Gener, I.; Magnoux, P. Appl. Catal. B: Environ. 2010, 100, 91.  

    19. [19]

      (19) Wu, X. Q.; Zong, R. L.; Mu, H. J.; Zhu, Y. F. Acta Phys. -Chim. Sin. 2010, 26, 3002. [吴小琴, 宗瑞隆, 牟豪杰, 朱永法. 物理化学学报, 2010, 26, 3002.]

    20. [20]

      (20) Song, Y. Q.; Kang, C. L.; Feng, Y. L.; Liu, F.; Zhou, X. L.; Wang, J. A.; Xu, L. Y. Catal. Today 2009, 148, 63.  

    21. [21]

      (21) Mitsui, T.; Tsutsui, K.; Matsui, T.; Kikuchi, R.; Eguchi, K. Appl. Catal. B: Environ. 2008, 78, 158.  

    22. [22]

      (22) Lahousse, C.; Bernier, A.; Grange, P.; Delmon, B.; Papaefthimiou, P.; Ioannides, T.; Verykiosy, X. J. Catal .1998, 178, 214.  

    23. [23]

      (23) Lee, S. J.; Gavriilidis, A.; Pankhurst, Q. A.; Kyek, A.;Wagner, F. E.;Wong, P. C. L.; Yeung, K. L. J. Catal. 2001, 200, 298.  

    24. [24]

      (24) Hamoudi, S.; Larachi, F.; Adnot, A.; Sayari, A. J. Catal. 1999, 185, 333.  

    25. [25]

      (25) Liang, S. H.; Teng, F.; Bulgan, G.; Zong, R. L.; Zhu, Y. F. J. Phys. Chem. C 2008, 112, 5307.  

    26. [26]

      (26) Teng, F.; Yao,W. Q.; Zhu, Y. F.; Chen, M. D.;Wang, R. H.; Mho, S.; Meng, D. D. J. Phys. Chem. C 2009, 113, 3089.  

    27. [27]

      (27) Wang, X.; Li, Y. D. Chem. Eur. J. 2003, 9, 300.  

    28. [28]

      (28) Chakraborty, S.; Raj, C. R. Sensors and Actuators B 2010, 147, 222.  

    29. [29]

      (29) Xu, R.;Wang, X.;Wang, D. S.; Zhou, K. B.; Li, Y. D. J. Catal. 2006, 237, 426.  

    30. [30]

      (30) Wang, L. C.; Liu, Y. M.; Chen, M.; Cao, Y.; He, H. Y.; Fan, K. N. J. Phys. Chem. C 2008, 112, 6981.  

    31. [31]

      (31) Banerjee, D.; Nesbitt, H.W. Geochim Cosmochim Acta 2001, 65, 1703.  

    32. [32]

      (32) Wang, L. C.; He, L.; Liu, Q.; Liu, Y. M.; Chen, M.; Cao, Y.; He, H. Y.; Fan, K. N. Appl. Catal. A: Gen. 2008, 344, 150.  

    33. [33]

      (33) Kapteijn, F.; van Langeveld, A. D.; Moulijn, J. A.; Andreini, A.; Vuurman, M. A.; Turek, A. M.; Jehng, J. M.;Wachs, I. E. J. Catal. 1994, 150, 94.  

    34. [34]

      (34) Muilenbergy, G. E. Handbook of X-Ray Photoelectron Spectroscopy; Perkin-Elmer Corporation: Minnesota, 1979.

    35. [35]

      (35) Srinivasan, B.; Gardner, S. D. Surf. Interface Anal. 1998, 26, 1035.  

    36. [36]

      (36) Zhang, L. C.; Zhou, Q.; Liu, Z. H.; Hou, X. D.; Li, Y. B.; Lv, Y. Chem. Mater. 2009, 21, 5066.  

    37. [37]

      (37) Breysse, M.; Claudel, B.; Faure, L.; Guenin, M.;Williams, R. J. J.;Wolkenstein, T. J. Catal. 1976, 45, 137.  

  • 加载中
    1. [1]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    2. [2]

      Xuefei Zhao Xuhong Hu Zhenhua Jia . 理论与计算化学在傅-克烷基化反应教学中的应用. University Chemistry, 2025, 40(8): 360-367. doi: 10.12461/PKU.DXHX202410008

    3. [3]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    4. [4]

      Xueqi YangJuntao ZhaoJiawei YeDesen ZhouTingmin DiJun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-0. doi: 10.1016/j.actphy.2025.100074

    5. [5]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    6. [6]

      Lijun Yue Siya Liu Peng Liu . 不同晶相纳米MnO2的制备及其对生物乙醇选择性氧化催化性能的测试——一个科研转化的综合化学实验. University Chemistry, 2025, 40(8): 225-232. doi: 10.12461/PKU.DXHX202410005

    7. [7]

      Gaopeng LiuLina LiBin WangNingjie ShanJintao DongMengxia JiWenshuai ZhuPaul K. ChuJiexiang XiaHuaming Li . Construction of Bi Nanoparticles Loaded BiOCl Nanosheets Ohmic Junction for Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(7): 2306041-0. doi: 10.3866/PKU.WHXB202306041

    8. [8]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    9. [9]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

    10. [10]

      Yuanqing WangYusong PanHongwu ZhuYanlei XiangRong HanRun HuangChao DuChengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050

    11. [11]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    12. [12]

      Qin LiHuihui ZhangHuajun GuYuanyuan CuiRuihua GaoWei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 2402016-0. doi: 10.3866/PKU.WHXB202402016

    13. [13]

      Haoyu SunDun LiYuanyuan MinYingying WangYanyun MaYiqun ZhengHongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007

    14. [14]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    15. [15]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    16. [16]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    17. [17]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    18. [18]

      Yu WangHaiyang ShiZihan ChenFeng ChenPing WangXuefei Wang . 具有富电子Ptδ壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081

    19. [19]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    20. [20]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

Metrics
  • PDF Downloads(976)
  • Abstract views(3400)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return