Citation:
WU Xiao-Qin, ZONG Rui-Long, ZHU Yong-Fa. Enhanced MnO2 Nanorods to CO and Volatile Organic Compounds Oxidative Activity by Platinum Nanoparticles[J]. Acta Physico-Chimica Sinica,
;2012, 28(02): 437-444.
doi:
10.3866/PKU.WHXB201112082
-
Pure-phase α-MnO2 and δ-MnO2 nanorods were synthesized through an easy solution-based hydrothermal method. Platinum nanoparticles supported by the obtained MnO2 nanorods were prepared by the colloid deposition process. The microstructure and adsorption activity of the obtained catalysts were researched by different techniques such as transmission electron microscopy (TEM), powder X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), N2 adsorption-desorption measurements, and H2 temperature-programmed reduction (H2-TPR). The cataluminescence (CTL) properties of CO and volatile organic compounds (VOCs), such as benzene and toluene, on the resultant catalysts were explored. The results showed that the platinum nanoparticles were well distributed in α-MnO2 and δ-MnO2. In addition, the Pt load process does not affect the crystal phase structure of the α-MnO2 nanorods, but can generate structural changes in the δ-MnO2 nanorods. The phase transformation did not the result of the reaction between the δ-MnO2 nanorods and Pt as shown in the XPS study. The α-MnO2 and δ-MnO2 nanorods showed a high catalytic oxidative activity toward CO, benzene, and toluene, and δ-MnO2 showed a higher activity than the α-MnO2 phase. Although, the Pt load led to a decrease in the surface area of the MnO2 nanorods which was confirmed by the N2 adsorption-desorption measurements, but the H2-TPR results showed that the interaction between Pt and MnO2 was intense, which significantly enhanced its catalytic activity. The Pt/δ-MnO2 nanorods exhibited a higher activity than Pt/α-MnO2. CTL research showed that the activities of the four catalysts increased in the order of α-MnO2≤ δ-MnO2 < Pt/α-MnO2 < Pt/δ-MnO2, and the H2-TPR results were consistent. Pt loading significantly enhanced the catalytic oxidative activity of α-MnO2 and δ-MnO2 nanorods to CO, benzene, and toluene.
-
Keywords:
-
Catalytic activity
, - MnO2 nanorod,
- Pt nanoparticle,
- Cataluminescence,
- CO,
- Benzene,
- Toluene
-
-
-
-
[1]
(1) Amann, M.; Lutz, M. J. Hazard. Mater. 2000, 78, 41.
-
[2]
(2) Li, N.; Gaillard, F. Appl. Catal. B: Environ. 2009, 88, 152.
-
[3]
(3) Aguero, F. N.; Barbero, B. P.; Gambaro, L.; Cadús, L. E. Appl. Catal. B: Environ. 2009, 91, 108.
-
[4]
(4) Li, Y.; Zhang, X.; He, H.; Yu, Y.; Yuan, T.; Tian, Z.;Wang, J.; Li, Y. Appl. Catal. B: Environ. 2009, 89, 659.
-
[5]
(5) Gandhe, A. R.; Rebello, J. S.; Figueiredo, J. L.; Fernandes, J. B. Appl. Catal. B: Environ. 2007, 72, 129.
-
[6]
(6) Liotta, L. F. Appl. Catal. B: Environmental. 2010, 100, 403.
-
[7]
(7) Li, H. F.; Lu, G. Z.; Dai, Q. G.;Wang, Y. Q.; Guo, Y.; Guo, Y. L. Appl. Catal. B: Environ. 2011, 102, 475.
-
[8]
(8) Diehl, F.; Barbier, J. Jr,; Duprez, D.; Guibard, I.; Mabilon, G. Appl. Catal. B: Environ. 2010, 95, 217.
-
[9]
(9) He, C.; Li, J.; Li, P.; Cheng, J.; Hao, Z.; Xu, Z. P. Appl. Catal. B: Environ. 2010, 96, 466.
-
[10]
(10) Pitkäaho, S.; Ojala, S.; Maunula, T.; Savimäki, A.; Kinnunen, T.; Keiski, R. L. Appl. Catal. B: Environ. 2011, 102, 395.
-
[11]
(11) Ousmane, M.; Liotta, L. F.; Carlo, G. D.; Pantaleo, G.; Venezia, A. M.; Deganello, G.; Retailleau, L.; Boreave, A.; Giroir- Fendler, A. Appl. Catal. B: Environ. 2011, 101, 629.
-
[12]
(12) Kim, S. C. J. Hazard. Mater. B 2002, 91, 285.
-
[13]
(13) Rivas, B.; López-Fonseca, R.; Gutiérrez-Ortiz, M.; Giérrez- Ortiz, J. I. Appl. Catal. B: Environ. 2011, 101, 317.
-
[14]
(14) Wang, X.; Na, N.; Zhang, S. C.;Wu, Y. Y.; Zhang, X. L. J. Am. Chem. Soc. 2007, 129, 6062.
-
[15]
(15) Comotti, M.; Li,W. C.; Spliethoff, B.; Schüth, F. J. Am. Chem. Soc. 2006, 128, 917.
-
[16]
(16) Bulgan, G.; Zong, R. L.; Liang, S. H.; Yao,W. Q.; Zhu, Y. F. Acta Phys. -Chim. Sin. 2008, 24, 1547. [Bulgan G., 宗瑞隆, 梁淑惠, 姚文清, 朱永法. 物理化学学报, 2008, 24, 1547.]
- [17]
-
[18]
(18) Beauchet, R.; Mijoin, J.; Batonneau-Gener, I.; Magnoux, P. Appl. Catal. B: Environ. 2010, 100, 91.
-
[19]
(19) Wu, X. Q.; Zong, R. L.; Mu, H. J.; Zhu, Y. F. Acta Phys. -Chim. Sin. 2010, 26, 3002. [吴小琴, 宗瑞隆, 牟豪杰, 朱永法. 物理化学学报, 2010, 26, 3002.]
-
[20]
(20) Song, Y. Q.; Kang, C. L.; Feng, Y. L.; Liu, F.; Zhou, X. L.; Wang, J. A.; Xu, L. Y. Catal. Today 2009, 148, 63.
-
[21]
(21) Mitsui, T.; Tsutsui, K.; Matsui, T.; Kikuchi, R.; Eguchi, K. Appl. Catal. B: Environ. 2008, 78, 158.
-
[22]
(22) Lahousse, C.; Bernier, A.; Grange, P.; Delmon, B.; Papaefthimiou, P.; Ioannides, T.; Verykiosy, X. J. Catal .1998, 178, 214.
-
[23]
(23) Lee, S. J.; Gavriilidis, A.; Pankhurst, Q. A.; Kyek, A.;Wagner, F. E.;Wong, P. C. L.; Yeung, K. L. J. Catal. 2001, 200, 298.
-
[24]
(24) Hamoudi, S.; Larachi, F.; Adnot, A.; Sayari, A. J. Catal. 1999, 185, 333.
-
[25]
(25) Liang, S. H.; Teng, F.; Bulgan, G.; Zong, R. L.; Zhu, Y. F. J. Phys. Chem. C 2008, 112, 5307.
-
[26]
(26) Teng, F.; Yao,W. Q.; Zhu, Y. F.; Chen, M. D.;Wang, R. H.; Mho, S.; Meng, D. D. J. Phys. Chem. C 2009, 113, 3089.
- [27]
-
[28]
(28) Chakraborty, S.; Raj, C. R. Sensors and Actuators B 2010, 147, 222.
-
[29]
(29) Xu, R.;Wang, X.;Wang, D. S.; Zhou, K. B.; Li, Y. D. J. Catal. 2006, 237, 426.
-
[30]
(30) Wang, L. C.; Liu, Y. M.; Chen, M.; Cao, Y.; He, H. Y.; Fan, K. N. J. Phys. Chem. C 2008, 112, 6981.
-
[31]
(31) Banerjee, D.; Nesbitt, H.W. Geochim Cosmochim Acta 2001, 65, 1703.
-
[32]
(32) Wang, L. C.; He, L.; Liu, Q.; Liu, Y. M.; Chen, M.; Cao, Y.; He, H. Y.; Fan, K. N. Appl. Catal. A: Gen. 2008, 344, 150.
-
[33]
(33) Kapteijn, F.; van Langeveld, A. D.; Moulijn, J. A.; Andreini, A.; Vuurman, M. A.; Turek, A. M.; Jehng, J. M.;Wachs, I. E. J. Catal. 1994, 150, 94.
-
[34]
(34) Muilenbergy, G. E. Handbook of X-Ray Photoelectron Spectroscopy; Perkin-Elmer Corporation: Minnesota, 1979.
-
[35]
(35) Srinivasan, B.; Gardner, S. D. Surf. Interface Anal. 1998, 26, 1035.
-
[36]
(36) Zhang, L. C.; Zhou, Q.; Liu, Z. H.; Hou, X. D.; Li, Y. B.; Lv, Y. Chem. Mater. 2009, 21, 5066.
-
[37]
(37) Breysse, M.; Claudel, B.; Faure, L.; Guenin, M.;Williams, R. J. J.;Wolkenstein, T. J. Catal. 1976, 45, 137.
-
[1]
-
-
-
[1]
Zelong LIANG , Shijia QIN , Pengfei GUO , Hang XU , Bin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409
-
[2]
Xuefei Zhao , Xuhong Hu , Zhenhua Jia . 理论与计算化学在傅-克烷基化反应教学中的应用. University Chemistry, 2025, 40(8): 360-367. doi: 10.12461/PKU.DXHX202410008
-
[3]
Fei ZHOU , Xiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236
-
[4]
Xueqi Yang , Juntao Zhao , Jiawei Ye , Desen Zhou , Tingmin Di , Jun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-0. doi: 10.1016/j.actphy.2025.100074
-
[5]
Yufang GAO , Nan HOU , Yaning LIANG , Ning LI , Yanting ZHANG , Zelong LI , Xiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036
-
[6]
Lijun Yue , Siya Liu , Peng Liu . 不同晶相纳米MnO2的制备及其对生物乙醇选择性氧化催化性能的测试——一个科研转化的综合化学实验. University Chemistry, 2025, 40(8): 225-232. doi: 10.12461/PKU.DXHX202410005
-
[7]
Gaopeng Liu , Lina Li , Bin Wang , Ningjie Shan , Jintao Dong , Mengxia Ji , Wenshuai Zhu , Paul K. Chu , Jiexiang Xia , Huaming Li . Construction of Bi Nanoparticles Loaded BiOCl Nanosheets Ohmic Junction for Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(7): 2306041-0. doi: 10.3866/PKU.WHXB202306041
-
[8]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[9]
Chenye An , Sikandaier Abiduweili , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019
-
[10]
Yuanqing Wang , Yusong Pan , Hongwu Zhu , Yanlei Xiang , Rong Han , Run Huang , Chao Du , Chengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050
-
[11]
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
-
[12]
Qin Li , Huihui Zhang , Huajun Gu , Yuanyuan Cui , Ruihua Gao , Wei-Lin Dai . In situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 2402016-0. doi: 10.3866/PKU.WHXB202402016
-
[13]
Haoyu Sun , Dun Li , Yuanyuan Min , Yingying Wang , Yanyun Ma , Yiqun Zheng , Hongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007
-
[14]
Bizhu Shao , Huijun Dong , Yunnan Gong , Jianhua Mei , Fengshi Cai , Jinbiao Liu , Dichang Zhong , Tongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026
-
[15]
Guangming YIN , Huaiyao WANG , Jianhua ZHENG , Xinyue DONG , Jian LI , Yi'nan SUN , Yiming GAO , Bingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086
-
[16]
Jiahong ZHENG , Jingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170
-
[17]
Yingchun ZHANG , Yiwei SHI , Ruijie YANG , Xin WANG , Zhiguo SONG , Min WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078
-
[18]
Yu Wang , Haiyang Shi , Zihan Chen , Feng Chen , Ping Wang , Xuefei Wang . 具有富电子Ptδ−壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081
-
[19]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[20]
Jingyu Cai , Xiaoyu Miao , Yulai Zhao , Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028
-
[1]
Metrics
- PDF Downloads(976)
- Abstract views(3400)
- HTML views(2)