Citation: MIN Shi-Xiong, Lü ng-Xuan. Preparation of CdS/Graphene Composites and Photocatalytic Hydrogen Generation from Water under Visible Light Irradiation[J]. Acta Physico-Chimica Sinica, ;2011, 27(09): 2178-2184. doi: 10.3866/PKU.WHXB20110904 shu

Preparation of CdS/Graphene Composites and Photocatalytic Hydrogen Generation from Water under Visible Light Irradiation

  • Received Date: 22 April 2011
    Available Online: 4 July 2011

    Fund Project: 国家重点基础研究发展规划项目(973) (2007CB613305, 2009CB22003) (973) (2007CB613305, 2009CB22003) 国家高技术研究发展计划项目(863) (2009AA05Z117) (863) (2009AA05Z117)中国科学院太阳能行动计划(KGCX2-YW-390-1, KGCX2-YW-390-3)资助 (KGCX2-YW-390-1, KGCX2-YW-390-3)

  • CdS/graphene composite photocatalysts were prepared by photocatalytically reducing graphene oxide with CdS nanoparticles in an aqueous ethanol solution. The structure and photoelectrical properties of the resulted materials were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and transient photocurrent measurements. The photocatalytic activities of the CdS/graphene composites for hydrogen evolution were evaluated under visible light irradiation (λ≥420 nm). The results show that the graphene oxide can be efficiently reduced by the photogenerated electrons of CdS and thus CdS/graphene composite is formed and it shows strong interactions between CdS and graphene. Compared with CdS, the enhanced photocurrent generation and photocatalytic activity toward hydrogen evolution for the CdS/ graphene composite photocatalysts could be attributed to the ability of graphene to capture and transport electrons, and to promote charge separation.
  • 加载中
    1. [1]

      (1) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Gri rieva, I. V.; Firsov, A. A. Science 2004, 306, 666.  

    2. [2]

      (2) Geim, A. K.; Novoselov, K. S. Nat. Mat. 2007, 6, 183.  

    3. [3]

      (3) Stoller, M. D.; Park, S.; Zhu, Y.W.; An, J.; Ruoff, R. S. Nano Lett. 2008, 8, 3498.  

    4. [4]

      (4) Bolotin, K. I.; Sikes, K. J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H. L. Solid State Commun. 2008, 146, 351.  

    5. [5]

      (5) Geng, X. M.; Niu, L.; Xing, Z. Y.; Song, R. S.; Liu, G. T.; Sun, M. T.; Cheng, G. S.; Zhong, H. J.; Liu, Z. H.; Zhang, Z. J.; Sun, L. F.; Xu, H. X.; Lu, L.; Liu, L.W. Adv . Mater. 2010, 22, 638.  

    6. [6]

      (6) Lin, Y.; Zhang, K.; Chen,W. F.; Liu, Y. D.; Geng, Z, G.; Zeng, J.; Pan, N.; Yan, L. F.;Wang, X. P.; Hou, J. G. ACS Nano 2010, 4, 3033.  

    7. [7]

      (7) Guo, C. X.; Yang, H. B.; Sheng, Z. M.; Lu, Z. S.; Song, Q. L.; Li, C. M. Angew . Chem . Int . Edit. 2010, 49, 3014.  

    8. [8]

      (8) Kim, S. R.; Parvez, M. K.; Chhowalla, M. Chem . Phys . Lett. 2009, 483, 124.  

    9. [9]

      (9) Zhang, Y. H.; Tang, Z. R.; Fu, X. Z.; Xu, Y. J. ACS Nano 2010, 4, 7303.  

    10. [10]

      (10) Du, J.; Zhang, H.; Lv, X. J.; Li, Y. M.;Wang, Y.; Li, J. H. ACS Nano 2010, 4, 380.  

    11. [11]

      (11) Akhavan, O.; Ghaderi, E. J . Phys . Chem . C 2009, 113, 20214.  

    12. [12]

      (12) Chen, C.; Cai,W. M.; Long, M. C.; Zhou, B. X.;Wu, Y. H.;Wu, D. Y.; Feng, Y. J. ACS Nano 2010, 4, 6425.  

    13. [13]

      (13) Xu, T. G.; Zhang, L.W.; Cheng, H. Y.; Zhu, Y. F. Appl . Catal . B 2011, 101, 382.  

    14. [14]

      (14) Lightcap, I. V.; Kosel, T. H., Kamat, P. V. Nano Lett. 2010, 10, 577.  

    15. [15]

      (15) Ng, Y. H.; Lightcap, I. V.; odwin, K.; Matsumura, M.; Kamat, P. V. J . Phys . Chem . Lett. 2010, 1, 2222.  

    16. [16]

      (16) Kamat, P. V. J . Phys . Chem . Lett. 2010, 1, 520.  

    17. [17]

      (17) Zhang, X. Y.; Li, H. P.; Cui, X. L.; Lin, Y. H. J . Mater . Chem. 2010, 20, 2801.  

    18. [18]

      (18) Ng, Y. H.; Iwase, A.; Kudo, A.; Amal, R. J . Phys . Chem . Lett. 2010, 1, 2607.  

    19. [19]

      (19) Hummers,W. S.; Offeman, R. E. J . Am . Chem . Soc. 1958, 80, 1339.  

    20. [20]

      (20) Kovtyukhova, N. I.; Ollivier, P. J.; Martin, B. R.; Mallouk, T. E.; Chizhik, S. A.; Buzaneva, E. V.; rchinskiy, A. D. Chem . Mater. 1999, 11, 771.  

    21. [21]

      (21) Yan, H. J.; Yang, J. H.; Ma, G. J.;Wu, G. P.; Zong, X.; Lei, Z. B.; Shi, J. Y.; Li, C. J. Catal. 2009, 266, 165.  

    22. [22]

      (22) Yang, Y. H.; Sun, H. J.; Peng, T. J.; Huang, Q. Acta Phys. -Chim. Sin. 2011, 27, 736. [杨勇辉, 孙红娟, 彭同江, 黄桥. 物理化学学报, 2011, 27, 736.]

    23. [23]

      (23) Szabó, T.; Berkesi, O.; Forgó, P.; Josepovits, K.; Sanakis, Y.; Petridis, D.; Dékány, I. Chem . Mater. 2006, 18, 2740.  

    24. [24]

      (24) Lee, D.W.; De Los Santos, V. L.; Seo, J.W.; Felix, L. L.; Bustamante, D. A.; Cole, J. M.; Barnes, C. H.W. J . Phys . Chem . B 2010, 114, 5723.  

    25. [25]

      (25) Xi, Y. Y.; Zhou, J. Z.; Zhang, Y.; Dong, P.; Cai, C. D.; Huang, H. G.; Lin, Z. H. Chem. J. Chin. Univ. 1999, 20, 937. [席燕燕, 周剑章, 张彦, 董平, 蔡成东, 黄怀国, 林仲华. 高等学校化学学报, 1999, 20, 937.]

    26. [26]

      (26) Zhang, H. Q.; Chen, K. X.; Jin, Z. S. Chin. J. Appl. Chem. 1999, 14, 98. [张虎勤, 陈开勋, 金振声. 应用化学, 1999, 14, 98.]

    27. [27]

      (27) Xiong, Z. G.; Zhang, L. L.; Ma, J. Z.; Zhao, X. S. Chem . Commun. 2010, 46, 6099.  

    28. [28]

      (28) Jin, Z. L.; Lü, G. X. J . Mol . Catal. (China) 2004, 18, 310. [靳治良, 吕功煊. 分子催化, 2004, 18, 310.]

    29. [29]

      (29) Zhang, X. J.; Tang, C. Q.; Jin, Z. L.; Lü, G. X.; Li, S. B. Acta Phys. -Chim. Sin. 2011, 27, 1143. [张晓杰, 汤长青, 靳治良, 吕功煊, 李树本. 物理化学学报, 2011, 27, 1143.]

  • 加载中
    1. [1]

      Hailang JIAYujie LUPengcheng JI . Preparation and properties of nitrogen and phosphorus co-doped graphene carbon aerogel supported ruthenium electrocatalyst for hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2327-2336. doi: 10.11862/CJIC.20250021

    2. [2]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    3. [3]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    4. [4]

      Tao XuWei SunTianci KongJie ZhouYitai Qian . Stable Graphite Interface for Potassium Ion Battery Achieving Ultralong Cycling Performance. Acta Physico-Chimica Sinica, 2024, 40(2): 2303021-0. doi: 10.3866/PKU.WHXB202303021

    5. [5]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    6. [6]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    7. [7]

      Qi HUANGYouyi WANGZhujian MAOZhonghui YEWeihan CHENJui-yeh RAUJian HUANG . Enhanced photocatalytic tetracycline degradation via 2D CdS/Ti3AlC2 MAX heterostructure. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2385-2398. doi: 10.11862/CJIC.20250159

    8. [8]

      Anbang DuYuanfan WangZhihong WeiDongxu ZhangLi LiWeiqing YangQianlu SunLili ZhaoWeigao XuYuxi Tian . Photothermal Microscopy of Graphene Flakes with Different Thicknesses. Acta Physico-Chimica Sinica, 2024, 40(5): 2304027-0. doi: 10.3866/PKU.WHXB202304027

    9. [9]

      Kaihui Huang Boning Feng Xinghua Wen Lei Hao Difa Xu Guijie Liang Rongchen Shen Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204

    10. [10]

      Jiawei HuKai XiaAo YangZhihao ZhangWen XiaoChao LiuQinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043

    11. [11]

      Shuang CaoBo ZhongChuanbiao BieBei ChengFeiyan Xu . Insights into Photocatalytic Mechanism of H2 Production Integrated with Organic Transformation over WO3/Zn0.5Cd0.5S S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(5): 2307016-0. doi: 10.3866/PKU.WHXB202307016

    12. [12]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

    13. [13]

      Jingzhao ChengShiyu GaoBei ChengKai YangWang WangShaowen Cao . Construction of 4-Amino-1H-imidazole-5-carbonitrile Modified Carbon Nitride-Based Donor-Acceptor Photocatalyst for Efficient Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-0. doi: 10.3866/PKU.WHXB202406026

    14. [14]

      Fanpeng MengFei ZhaoJingkai LinJinsheng ZhaoHuayang ZhangShaobin Wang . Optimizing interfacial electric fields in carbon nitride nanosheet/spherical conjugated polymer S-scheme heterojunction for hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-0. doi: 10.1016/j.actphy.2025.100095

    15. [15]

      Chengyan GeJiawei HuXingyu LiuYuxi SongChao LiuZhigang Zou . Self-integrated black NiO clusters with ZnIn2S4 microspheres for photothermal-assisted hydrogen evolution by S-scheme electron transfer mechanism. Acta Physico-Chimica Sinica, 2026, 42(1): 100154-0. doi: 10.1016/j.actphy.2025.100154

    16. [16]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    17. [17]

      Xinzhe HUANGLihui XUYue YANGLiming WANGZhangyong LIUZhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212

    18. [18]

      Sumiya Akter DristyMd Ahasan HabibShusen LinMehedi Hasan JoniRutuja MandavkarYoung-Uk ChungMd NajibullahJihoon Lee . Exploring Zn doped NiBP microspheres as efficient and stable electrocatalyst for industrial-scale water splitting. Acta Physico-Chimica Sinica, 2025, 41(7): 100079-0. doi: 10.1016/j.actphy.2025.100079

    19. [19]

      Peipei SunJinyuan ZhangYanhua SongZhao MoZhigang ChenHui Xu . Built-in Electric Fields Enhancing Photocarrier Separation and H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-0. doi: 10.3866/PKU.WHXB202311001

    20. [20]

      Chengxin ChenHongfei ShiXiaoyan CaiLiang MaoZhe Chen . Enhanced bifunctional photocatalytic performances for H2 evolution and HCHO elimination with an S-scheme CoWO4/CdIn2S4 heterojunction. Acta Physico-Chimica Sinica, 2025, 41(12): 100155-0. doi: 10.1016/j.actphy.2025.100155

Metrics
  • PDF Downloads(2978)
  • Abstract views(5437)
  • HTML views(42)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return