Citation: JIA Li-Hui, LIU An-Chang, MU Zong-E, CHEN Yun-Feng. Magnetostructural Correlation Study of a Novel Strong Antiferromagnetic Dimer Copper(II) Coordination Complex with Mono-Methyl Phthalate[J]. Acta Physico-Chimica Sinica, ;2011, 27(07): 1595-1599. doi: 10.3866/PKU.WHXB20110736 shu

Magnetostructural Correlation Study of a Novel Strong Antiferromagnetic Dimer Copper(II) Coordination Complex with Mono-Methyl Phthalate

  • Received Date: 29 March 2011
    Available Online: 3 June 2011

    Fund Project: 国家自然科学基金(21002076)资助项目 (21002076)

  • We prepared and obtained a novel dinuclear copper(II) coordination complex [Cu2(mMP)2(H2O)2]2·2H2O (1) using mono-methyl phthalate as a ligand (mMP is a mono-methyl phthalate or 1,2- benzenedicarboxylate monomethyl ester). The crystal structure of complex 1 was characterized by elemental analysis, IR spectroscopy, and X-ray analysis. This tetra-carboxylato-bridged dinuclear complex adopts a dimeric paddle-wheel cage structure and the coordination configuration around each copper(II) cation is square-pyramidal with four oxygen atoms of the carboxylate groups from four different mono- methyl phthalate ligands and one oxygen atom of water at the apical position. Intermolecular hydrogen bonds are found between the hydrogen atoms of the coordinated or uncoordinated water and the oxygen atoms of the carboxyl from the adjacent molecules and it forms a three-dimensional (3D) network structure. The magnetic data for complex 1 indicate a strong intramolecular antiferromagnetic interaction between the two paramagnetic metal ions with a magnetic coupling constant of 2J=-324 cm-1. In this paper, we analyzed the magnetostructural correlation of complex 1 in detail and discuss the main factor that determines the strong antiferromagnetic interaction in dimeric copper(II) carboxylates. Compared with the structure and the magnetic property of other related complexes, the main factor that determines the strong antiferromagnetic interaction in the dimeric copper(II) carboxylate is an electronic structure of the bridging O-C-O moiety.

  • 加载中
    1. [1]

      (1) Kahn, O. Molecular Magnetism;Weinheim: VCH, 1993.

    2. [2]

      (2) Gatteschi, D.; Kahn, O.; Miller, J. S. Magnetic Molecualr Materials, NATO ASI Series E198; Dordrecht: Kluwer, 1991.

    3. [3]

      (3) Mroziński, J. Coord. Chem. Rev. 2005, 249, 2534.  

    4. [4]

      (4) Steel, P. J. Coord. Chem. Rev. 1990, 106, 227.  

    5. [5]

      (5) Kahn, O. Angew. Chem. Int. Edit. 1985, 24, 834.  

    6. [6]

      (6) Carlin, R. L. Magnetochemistry; Springer-Verlag: Berlin, 1986; pp 34-126.

    7. [7]

      (7) Mortensen, G. K.; Main, K. M.; Andersson, A. M.; Leffers, H.; Skakkeb?k, N. E. Anal. Bioanal. Chem. 2005, 382, 1084.  

    8. [8]

      (8) Main, K. M.; Mortensen, G. K.; Kaleva, M. M.; Boisen, K. A.; Damgaard, I. N.; Chellakooty, M.; Schmidt, I. M.; Suomi, A. M.; Virtanen, H. E.; Petersen, J. H.; Andersson, A. M.; Toppari, S.; Niels, E. Environmental Health Perspectives 2006, 114 (2), 270.

    9. [9]

      (9) Alfonso, L.; Zimnik, S.; Heinz, N. Toxicology and Applied Pharmacology 2003, 188 (1), 14.

    10. [10]

      (10) Sussanne, J.; Anders, B. Environmental Toxicology and Chemistry 2003, 22 (12), 3037.

    11. [11]

      (11) Jia, L. H.; Liu, Z. L.; Liu,W.; Gu, Y. F.; Yao, K. L. Chin. J. Inorg. Chem. 2008, 24 (2), 289. [贾丽慧, 刘祖黎, 刘蔚, 谷云飞, 姚凯伦. 无机化学学报, 2008, 24 (2), 289.]

    12. [12]

      (12) Mulay, L. N.; Boudreaux, E. A. Theroy and Applications of Molecular Diamagnetism;Wiley: New York, 1976.

    13. [13]

      (13) Sheldrick, G. M. SHELXL-97; Program zur Verfeinerung von Kristallstrukturen: Göttingen, 1997.

    14. [14]

      (14) Sheldrick, G. M. SHELXS-97; Program zur Lösung von Kristallstrukturen: Göttingen, 1997.

    15. [15]

      (15) Melnik, M.; Kabešová, M.; Koman, M.; Macášková, L?.; Garaj, J.; Holloway, C. E.; Valent, A. J. Coord. Chem. 1988, 45, 147.

    16. [16]

      (16) Kato, M.; Muto, Y. Coord. Chem. Rev. 1988, 92, 45

    17. [17]

      (17) Doedens, R. J. Prog. Inorg. Chem. 1976, 21, 209.  

    18. [18]

      (18) Erre, L. S.; Micera, G.; Piu, P.; Cariati, F.; Ciani, G. Inorg. Chem. 1985, 24, 2297.  

    19. [19]

      (19) Brown, G. M.; Chidambaram, R. Acta Cryst. B 1973, 29, 2393.  

    20. [20]

      (20) Meester, P.; Fletcher, S. R.; Skapski, A. C. J. Chem. Soc. Dalton Trans. 1973, 2575.

    21. [21]

      (21) Harrison,W.; Rettig, S.; Trotter, J. J. Chem. Soc. Dolton Trans. 1972, 1852.

    22. [22]

      (22) Koh, Y. B.; Christoph, G. G. Inorg. Chem. 1979, 18, 1122.  

    23. [23]

      (23) Brian, R. F.; White, D. H. Acta Cryst. B 1982, 38, 1014.  

    24. [24]

      (24) Bleaney, B.; Bowers, K. D. Proc. R. Soc. A 1952, 214, 451.  

    25. [25]

      (25) Agterberg, P. F.; Kluit, J. H.; Driessen,W. L.; Reedijk, J. Inorg. Chim. Acta 1998, 267, 183.

    26. [26]

      (26) Kawata, T.; Uekusa, H.; Ohba, S.; Furukawa, T.; Tokii, T.; Muto, Y.; Kato, M. Acta Cryst. B 1992, 48, 253.  

    27. [27]

      (27) Kahn, O. Magnetostructural Correlations in Exchange Coupled Systems; Dordrecht: Reidel, 1985; pp 35-56.

    28. [28]

      (28) (a) odenough, J. B. Phys. Rev. 1955, 100, 564; J. Phys. Chem. Solids 1958, 6, 287.(b) odenough, J. B. Magnetism and the Chemical Bond; Interscience: New York, 1963.(c) Kanamori, J. J. Phys. Chem. Solids 1959, 10, 87.


  • 加载中
    1. [1]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    2. [2]

      Yanan Jiang Yuchen Ma . Brief Discussion on the Electronic Exchange Interaction in Quantum Chemistry Computations. University Chemistry, 2025, 40(3): 10-15. doi: 10.12461/PKU.DXHX202402058

    3. [3]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    4. [4]

      Shenhao QIUQingquan XIAOHuazhu TANGQuan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104

    5. [5]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    6. [6]

      Junqing WENRuoqi WANGJianmin ZHANG . Regulation of photocatalytic hydrogen production performance in GaN/ZnO heterojunction through doping with Li and Au. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 923-938. doi: 10.11862/CJIC.20240243

    7. [7]

      Zhihao HEJiafu DINGYunjie WANGXin SU . First-principles study on the structure-property relationship of AlX and InX (X=N, P, As, Sb). Chinese Journal of Inorganic Chemistry, 2025, 41(5): 1007-1019. doi: 10.11862/CJIC.20240390

    8. [8]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    9. [9]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    10. [10]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    11. [11]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    12. [12]

      Jinfeng Chu Yicheng Wang Ji Qi Yulin Liu Yan Li Lan Jin Lei He Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105

    13. [13]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    14. [14]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    15. [15]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    16. [16]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    17. [17]

      Jingwen Wang Minghao Wu Xing Zuo Yaofeng Yuan Yahao Wang Xiaoshun Zhou Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023

    18. [18]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    19. [19]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    20. [20]

      Xinyu Miao Hao Yang Jie He Jing Wang Zhiliang Jin . Adjusting the electronic structure of Keggin-type polyoxometalates to construct S-scheme heterojunction for photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(6): 100051-. doi: 10.1016/j.actphy.2025.100051

Metrics
  • PDF Downloads(1060)
  • Abstract views(2686)
  • HTML views(19)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return