Citation: LIANG Jian-Ming, ZHANG Ri-Guang, ZHAO Qiang, DONG Jin-Xiang, WANG Bao-Jun, LI Jin-Ping. Hydrogen Adsorption on Zeolite Na-MAZ and Li-MAZ Clusters[J]. Acta Physico-Chimica Sinica, ;2011, 27(07): 1647-1653. doi: 10.3866/PKU.WHXB20110714 shu

Hydrogen Adsorption on Zeolite Na-MAZ and Li-MAZ Clusters

  • Received Date: 20 January 2011
    Available Online: 23 May 2011

    Fund Project: 国家自然科学基金(20871090, 20976115, 20906066)资助项目 (20871090, 20976115, 20906066)

  • Hydrogen adsorption on zeolite Na-MAZ and Li-MAZ clusters was investigated using density functional theory (DFT) with the generalized gradient approximation (GGA) of the Perdew-Burke- Ernzerhof (PBE) exchange-correction functional and the double numerical plus polarization (DNP) basis set. Equilibrium structural parameters, vibration frequencies, and adsorption energies were obtained and compared. The calculated results show that four stable adsorption sites are present on zeolite MAZ. They are designated SI′, SI″, SII′, and SII″, respectively. The most stable adsorption structure was hydrogen on the SII″ site of zeolite Na-MAZ and the hydrogen on the SI″ and SII″ sites of zeolite Li-MAZ were the most stable. We also found that larger adsorption energies indicate longer H―H bond distances and a lower vibration frequency shift. The adsorption ability of zeolite Li-MAZ toward hydrogen is stronger than that of zeolite Na-MAZ. Zeolite Li-MAZ has a higher theoretical hydrogen storage capacity and it may be a potential hydrogen storage material.

  • 加载中
    1. [1]

      (1) Schlapbach, L.; Züttel, A. Nature 2001, 414, 353.  

    2. [2]

      (2) Dai,W.; Luo, J. S.; Tang, Y. J.;Wang, C. Y.; Chen, S. J.; Sun,W. G. Acta Phys. Sin. 2009, 58, 1890. [戴伟, 罗江山, 唐永建, 王朝阳, 陈善俊, 孙卫国. 物理学报, 2009, 58, 1890.]

    3. [3]

      (3) Prasanth, K. P.; Pillai, R. S.; Peter, S. A.; Bajaj, H. C.; Jasra, R. V.; Chung, H. D.; Kim, T. H.; Song, S. D. J. Alloy. Compd. 2008, 466, 439.  

    4. [4]

      (4) Weitkamp, J.; Fritz, M.; Ernst, S. Int. J. Hydrog. Energy 1995, 20, 967.  

    5. [5]

      (5) Dong, J. X.;Wang, X. Y.; Xu, H.; Zhao, Q.; Li, J. P. Int. J. Hydrog. Energy 2007, 32, 4998.

    6. [6]

      (6) Zecchina, A.; Bordiga, S.; Vitillo, J. G.; Ricchiardi, G.; Lamberti, C.; Spoto, G.; Bj?rgen, M.; Lillerud, K. P. J. Am. Chem. Soc. 2005, 127, 6361.  

    7. [7]

      (7) Langmi, H.W.; Book, D.;Walton, A.; Johnson, S. R.; Al- Mamouri, M. M.; Speight, J. D.; Edwards, P. P.; Harris, I. R.; Anderson, P. A. J. Alloy. Compd. 2005, 404-406, 637.

    8. [8]

      (8) Jhung, S. H.; Lee, J. S.; Yoon, J.W.; Kim, D. P.; Chang, J. S. Int. J. Hydrog. Energy 2007, 32, 4233.  

    9. [9]

      (9) Li, Y.; Yang, R. T. J. Phys. Chem. B 2006, 110, 17175.  

    10. [10]

      (10) Du, X. M.;Wu, E. D. Acta Phys. -Chim. Sin. 2009, 25, 549. [杜晓明, 吴尔冬. 物理化学学报, 2009, 25, 549.]

    11. [11]

      (11) Du, X. M.;Wu, E. D. Acta Phys. -Chim. Sin. 2009, 25, 1823. [杜晓明, 吴尔冬. 物理化学学报, 2009, 25, 1823.]

    12. [12]

      (12) Kang, L. H.; Deng,W. Q.; Han, K. L.; Zhang, T.; Liu, Z. M. Int. J. Hydrog. Energy 2008, 33, 105.

    13. [13]

      (13) Torres, F. J.; Civalleri, B.; Terentyev, A.; Uglien , P.; Pisani, C. J. Phys. Chem. C 2007, 111, 1871.  

    14. [14]

      (14) Palomino, G. T.; Carayol, M. R. L.; Areán, C. O. J. Mater. Chem. 2006, 28, 2884.

    15. [15]

      (15) Benco, L.; Bucko, T.; Hafner, J.; Toulhoat, H. J. Phys. Chem. B 2005, 109, 22491.  

    16. [16]

      (16) Areán, C. O.; Palomino, G. T.; Carayol, M. R. L.; Pulido, A.; Rube š, M.; Bludsky, O.; Nachtigall, P. Chem. Phys. Lett. 2009, 477, 139.  

    17. [17]

      (17) Martucci, A.; Alberti, A.; Guzman-Castillo, M. L.; Di Renzo, F.; Fajula, F. Microporous Mesoporous Mat. 2003, 63, 33.  

    18. [18]

      (18) Florián, J.; Kubelková, L.; Kotrla, J. J. Mol. Struct. 1995, 349, 435.  

    19. [19]

      (19) Zhang, R. G.; Ling, L. X.;Wang, B. J.; Huang,W. Appl. Surf. Sci. 2010, 256, 6717.  

    20. [20]

      (20) Zhang, R. G.;Wang, B. J.; Ling, L. X.; Liu, H. Y.; Huang,W. Appl. Surf. Sci. 2010, 257, 1175.  

    21. [21]

      (21) vind, N.; Andzelm, J.; Reindel, K.; Fitzgerald, G. Int. J. Mol. Sci. 2002, 3, 423.  

    22. [22]

      (22) Szalewicz, K.; Jeziorski, B. From van derWaals to Strongly Bound Complexes. In Molecular Interactions; Scheiner, S. Eds.; JohnWiley & Sons: New York, 1997; p 3.

    23. [23]

      (23) Novoa, J. J.; Sosa, C. J. Phys. Chem. 1995, 99, 15837.  

    24. [24]

      (24) van den Berg, A.W. C.; Bromley, S. T.;Wojdel, J. C.; Jansen, J. C. Phys. Rev. B 2005, 72, 155428.  

    25. [25]

      (25) Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Phys. Rev. B 1992, 46, 6671.  


  • 加载中
    1. [1]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    2. [2]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    3. [3]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    4. [4]

      Hui WangAbdelkader LabidiMenghan RenFeroz ShaikChuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039

    5. [5]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    6. [6]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    7. [7]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    8. [8]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    9. [9]

      Qin HuLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of Electron Bridge and Activation of MoS2 Inert Basal Planes by Ni Doping for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-0. doi: 10.3866/PKU.WHXB202406024

    10. [10]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    11. [11]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    12. [12]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    13. [13]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    14. [14]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    15. [15]

      Wei Li Jinfan Xu Yongjun Zhang Ying Guan . 共价有机框架整体材料的制备及食品安全非靶向筛查应用——推荐一个仪器分析综合化学实验. University Chemistry, 2025, 40(6): 276-285. doi: 10.12461/PKU.DXHX202406013

    16. [16]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    17. [17]

      Tongqi Ye Yanqing Wang Qi Wang Huaiping Cong Xianghua Kong Yuewen Ye . Reform of Classical Thermodynamics Curriculum from the Perspective of Computational Chemistry. University Chemistry, 2025, 40(7): 387-392. doi: 10.12461/PKU.DXHX202409128

    18. [18]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    19. [19]

      Xiaochen ZhangFei YuJie Ma . Cutting-Edge Applications of Multi-Angle Numerical Simulations for Capacitive Deionization. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-0. doi: 10.3866/PKU.WHXB202311026

    20. [20]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

Metrics
  • PDF Downloads(1288)
  • Abstract views(3990)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return