Citation:
HAN Ling, NI Ji-Peng, ZHANG Liang-Miao, YUE Bao-Hua, SHEN Shan-Shan, ZHANG Hao, LU Wen-Cong. Controlled Synthesis of Mesoporous MnO2 Nanospindles[J]. Acta Physico-Chimica Sinica,
;2011, 27(03): 743-748.
doi:
10.3866/PKU.WHXB20110318
-
We synthesized mesoporous MnO2 nanospindles by a one-step hydrothermal process in an aqueous solution of KMnO4 and glucose. The structure, morphology, purity, and size of the products were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), and nitrogen adsorption/desorption (BET) measurements. The reaction time and concentrations of glucose influenced the final structures and shapes of the MnO2 nanospindles. The length to diameter ratio of the MnCO3 precursor nanospindles can be easily tuned from 1.35:1 to 2.89:1. A possible formation mechanism for the mesoporous MnO2 nanospindles is proposed and discussed.
-
Keywords:
-
Hydrothermal method
, - Spindle,
- MnO2,
- Mesoporous
-
-
-
-
[1]
(1) Carreon, M. A.; Guliants, V. V. Chem. Mater. 2002, 14, 2670.
-
[2]
(2) Schuth, F. Chem. Mater. 2001, 13, 3184.
-
[3]
(3) Yang, P. D.; Zhao, D. Y.; Mar lese, D. I.; Chmelka, B. F.; Stucky, G. D. Nature 1998, 396, 152.
-
[4]
(4) Yang, P. D.; Zhao, D. Y.; Mar lese, D. I.; Chmelka, B. F.; Stucky, G. D. Chem. Mater. 1999, 11, 2813.
-
[5]
(5) He, X.; Antonelli, D. Angew. Chem. Int. Edit. 2001, 41, 214.
-
[6]
(6) Kresge, C.; Leonowicz, M.; Roth,W.; Vartuli, J.; Beck, J. Nature 1992, 359, 710.
-
[7]
(7) Gu, F.; Li, C. Z.;Wang, S. F.; Lu, M. K. Langmuir 2006, 22, 1329.
-
[8]
(8) Espinal, L.; Suib, S. L.; Rusling, J. F. J. Am. Chem. Soc. 2004, 126, 7676.
-
[9]
(9) Armstrong, A. R.; Bruce, P. G. Nature 1996, 381, 499.
-
[10]
(10) Song, X. C.; Zheng, Y. F.; Lin, S.;Wang, Y. Acta Phys.-Chim. Sin. 2007, 23, 258.
-
[11]
[宋旭春, 郑遗凡, 林深, 王芸. 物理化学学报, 2007, 23, 258.]
-
[12]
(11) Winter, M.; Brodd, R. J. Chem. Rev. 2004, 104, 4245.
-
[13]
(12) Toupin, M.; Brousse, T.; Belanger, D. Chem. Mater. 2002, 14, 3946.
-
[14]
(13) Wang, T.; Zhou, J. H.;Wang, D. J.; Sun, D.; Di, Z. Y.; He, J. P. Acta Phys-Chim. Sin. 2009, 25, 2155.
-
[15]
[王涛, 周建华, 王道军, 孙盾, 狄志勇, 何建平. 物理化学学报, 2009, 25, 2155.]
-
[16]
(14) Wills, A. S.; Raju, N. P.; Greedan, J. E. Chem. Mater. 1999, 11,1510.
-
[17]
(15) Segal, S. R.; Park, S. H.; Suib, S. L. Chem. Mater. 1997, 9, 98.
-
[18]
(16) Greedan, J. E.; Raju, N. P.;Wills, A. S.; Morin, C.; Shaw, S. M.; Reimers, J. N. Chem. Mater. 1998, 10, 3058.
-
[19]
(17) Wang, F.;Wang, Y. M.;Wen, Y. X.; Su, H. F.; Li, B. Acta Phys.-Chim. Sin. 2010, 26, 521.
-
[20]
[王凡, 王岩敏, 文衍宣, 粟海峰, 李斌. 物理化学学报, 2010, 26, 521.]
-
[21]
(18) Deng, J. G.; Zhang, L.; Dai, H. X.; Xia, Y. S.; Jiang, H. Y.; Zhang, H.; He, H. J. Phys. Chem. C 2010, 114, 2694.
-
[22]
(19) Cheng, F. Y.; Zhao, J. Z.; Song,W.; Li, C. S.; Ma, H.; Chen, J.; Shen, P.W. Inorg. Chem. 2006, 45, 2038.
-
[23]
(20) Wang, X.; Li, Y. D. J. Am. Chem. Soc. 2002, 124, 2880.
-
[24]
(21) Wang, X.; Li, Y. D. Chem-Eur. J. 2003, 9, 300.
-
[25]
(22) Xiong, Y. J.; Xie, Y.; Li, Z. Q.;Wu, C. Z. Chem-Eur. J. 2003, 9, 1645.
-
[26]
(23) Wei, M.; Konishi, Y.; Zhou, H.; Sugihara, H.; Arakawa, H. Nanotechnology 2005, 16, 245.
-
[27]
(24) Yuan, Z. Y.; Ren, T. Z.; Du, G. H.; Su, B. L. Appl. Phys. A-Mater.2005, 80, 743.
-
[28]
(25) Song, X. C.; Zhao, Y.; Zheng, Y. F. Cryst. Growth. Des. 2007, 7, 159.
-
[29]
(26) Xiong, Y. J.; Xie, Y.; Li, X. X.; Li, Z. Q. Carbon 2004, 42, 1447.
-
[30]
(27) Wong,W. K.; Li, C. P.; Au, F. C. K.; Fung, M. K.; Sun, X. H.; Lee, C. S.; Lee, S. T.; Zhu,W. J. Phys. Chem. B 2003, 107, 1514.
-
[31]
(28) Chowdhury, A. K. M. S.;Cameron, D. C.;Hashmi, M. S. J. Thin Solid Films 1998, 332, 62.
-
[32]
(29) Ho, C. M.; Yu, J. C.; Kwong, T.; Mak, A. C.; Lai, S. Y. Chem. Mater. 2005, 17, 4514.
-
[33]
(30) Ananth, M. V.; Pethkar, S.; Dakshinamurthi, K. J. Power Sources 1998, 75, 278.
-
[34]
(31) Liu, Z. H.; Yang, X. J.; Makita, Y.; Ooi, K. Chem. Mater. 2002, 14, 4800.
-
[35]
(32) Wang, X. L.; Yuan, A. B.;Wang, Y. Q. J. Power Sources 2007, 172, 1007.
-
[1]
-
-
-
[1]
Qinjin DAI , Shan FAN , Pengyang FAN , Xiaoying ZHENG , Wei DONG , Mengxue WANG , Yong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326
-
[2]
Shilong Li , Ming Zhao , Yefei Xu , Zhanyi Liu , Mian Li , Qing Huang , Xiang Wu . Performance optimization of aqueous Zn/MnO2 batteries through the synergistic effect of PVP intercalation and GO coating. Chinese Chemical Letters, 2025, 36(3): 110701-. doi: 10.1016/j.cclet.2024.110701
-
[3]
Bing LIU , Huang ZHANG , Hongliang HAN , Changwen HU , Yinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398
-
[4]
Haoying ZHAI , Lanzong WEN , Wenjie LIAO , Qin LI , Wenjun ZHOU , Kun CAO . Metal-organic framework-derived sulfur-doped iron-cobalt tannate nanorods for efficient oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 1037-1048. doi: 10.11862/CJIC.20240320
-
[5]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
-
[6]
Yiqian Jiang , Zihan Yang , Xiuru Bi , Nan Yao , Peiqing Zhao , Xu Meng . Mediated electron transfer process in α-MnO2 catalyzed Fenton-like reaction for oxytetracycline degradation. Chinese Chemical Letters, 2024, 35(8): 109331-. doi: 10.1016/j.cclet.2023.109331
-
[7]
Kun Chen , Huimin Lin , Xin Peng , Ziying Wu , Jingyue Dai , Yi Sun , Yaxuan Feng , Ziyi Huang , Zhiqiang Yu , Meng Yu , Guangyu Yao , Jigang Wang . In situ synthesis of MnO2 micro/nano-adjuvants for enhanced immunotherapy of breast tumors. Chinese Chemical Letters, 2025, 36(5): 110045-. doi: 10.1016/j.cclet.2024.110045
-
[8]
Yuanpei ZHANG , Jiahong WANG , Jinming HUANG , Zhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077
-
[9]
Chuanming GUO , Kaiyang ZHANG , Yun WU , Rui YAO , Qiang ZHAO , Jinping LI , Guang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459
-
[10]
Jiahong ZHENG , Jingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170
-
[11]
Lumin Zheng , Ying Bai , Chuan Wu . Multi-electron reaction and fast Al ion diffusion of δ-MnO2 cathode materials in rechargeable aluminum batteries via first-principle calculations. Chinese Chemical Letters, 2024, 35(4): 108589-. doi: 10.1016/j.cclet.2023.108589
-
[12]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[13]
Yahui HAN , Jinjin ZHAO , Ning REN , Jianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395
-
[14]
Pingwei Wu . Application of Diamond Software in Simplex Teaching. University Chemistry, 2024, 39(3): 118-121. doi: 10.3866/PKU.DXHX202311043
-
[15]
Kun Rong , Cuilian Wen , Jiansen Wen , Xiong Li , Qiugang Liao , Siqing Yan , Chao Xu , Xiaoliang Zhang , Baisheng Sa , Zhimei Sun . Hierarchical MoS2/Ti3C2Tx heterostructure with excellent photothermal conversion performance for solar-driven vapor generation. Acta Physico-Chimica Sinica, 2025, 41(6): 100053-. doi: 10.1016/j.actphy.2025.100053
-
[16]
Liuyun Chen , Wenju Wang , Tairong Lu , Xuan Luo , Xinling Xie , Kelin Huang , Shanli Qin , Tongming Su , Zuzeng Qin , Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054
-
[17]
Yuena Yang , Xufang Hu , Yushan Liu , Yaya Kuang , Jian Ling , Qiue Cao , Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125
-
[18]
Lu XU , Chengyu ZHANG , Wenjuan JI , Haiying YANG , Yunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431
-
[19]
Jing SU , Bingrong LI , Yiyan BAI , Wenjuan JI , Haiying YANG , Zhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414
-
[20]
Yang Lv , Yingping Jia , Yanhua Li , Hexiang Zhong , Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059
-
[1]
Metrics
- PDF Downloads(1375)
- Abstract views(2716)
- HTML views(32)