Citation: LU Yue-Mei, NG Qian-Ming, LU Fang-Ping, LIANG Ji, NIE Qing-Dong, ZHANG Xiu-Mei. Preparation of Sulfonated Carbon Nanotubes/Activated Carbon Composite Beads and Their Adsorption Capacity for Low Density Lipoprotein[J]. Acta Physico-Chimica Sinica, ;2011, 27(03): 683-688. doi: 10.3866/PKU.WHXB20110307 shu

Preparation of Sulfonated Carbon Nanotubes/Activated Carbon Composite Beads and Their Adsorption Capacity for Low Density Lipoprotein

  • Received Date: 2 September 2010
    Available Online: 27 January 2011

    Fund Project: 国家自然科学基金(50602026)资助项目 (50602026)

  • Sulfonated carbon nanotubes (CNTs)/activated carbon composite beads were obtained by suspension polymerization, carbonization, activation, and further sulfonation using the diazonium salt coupling method. Adsorption of low density lipoprotein (LDL) was explored with these composite beads. The results showed that the composite beads had od sphericity, smooth surface, developed mesopores and were sulfonated by p-aminobenzenesulfonic acid. With the increase of CNTs mass ratio, the adsorption capacity of LDL increased. When the CNTs mass fraction was 45%, the amount of LDL adsorption reached 6.564 mg·g-1 and was 3.3 times as large as that of the beads without CNTs. Therefore, the composite beads have od prospects as LDL adsorbents in hemoperfusion.

  • 加载中
    1. [1]

      (1) Holvoet, P.; Harris, T. B.; Tracy, R. P.; Verhamme, P.; Newman, A. B.; Rubin, S. M.; Simonsick, E. M.; Colbert, L. H.; Kritchevsky, S. B. Arterioscl. Throm. Vas. 2003, 23, 1444.

    2. [2]

      (2) Hiki, M.; Shimada, K.; Ohmura, H.; Kiyanagi, T.; Kume, A.; Sumiyoshi, K.; Fukao, K.; Inoue, N.; Mokuno, H.; Miyazaki, T.; Daida, H. J. Cardiol. 2009, 53, 108.

    3. [3]

      (3) Brown, M. S.; ldstein, J. L. Science 2006, 311, 1721.

    4. [4]

      (4) Bambauer, R.; Schiel, R.; Latza, R. Ther. Apher. Dial. 2003, 7, 382.

    5. [5]

      (5) Kobayashi, A.; Nakatani, M.; Furuyoshi, S.; Tani, N. Ther. Apher. 2002, 6, 365.

    6. [6]

      (6) Tasaki, H.; Yamashita, K.; Saito, Y.; Bujo, H.; Daida, H.; Mabuchi, H.; Tominaga, Y.; Matsuzaki, M.; Fukunari, K.; Nakazawa, R.; Tsuji, M.; Kawade, Y.; Yamamoto, S.; Ueda, Y.; Takayama, K. Ther. Apher. Dial. 2006, 10, 32.

    7. [7]

      (7) Julius, U.; Parhofer, K. G.; Heibges, A.; Kurz, S.; Klingel, R.; Geiss, H. C. J. Clin. Apher. 2007, 22, 215.

    8. [8]

      (8) Bosch, T.; Lennertz, A.; Kordes, B.; Samtleben, W. Ther. Apher. 1999, 3, 209.

    9. [9]

      (9) Bosch, T.; Lennertz, A.; Samtleben, W. Ther. Apher. 2001, 5, 358.

    10. [10]

      (10) Wendler, T.; Schilling, R.; Lennertz, A.; Sodemann, K.; Kleophas, W.; Meßner, H.; Riechers, G.; Wagner, J.; Keller, C.; Bosch, T. J. Clin. Apher. 2003, 18, 157.

    11. [11]

      (11) Bosch, T.; Gahr, S.; Belschner, U.; Schaefer, C.; Lennertz, A.; Rammo, J. Ther. Apher. Dial. 2006, 10, 210.

    12. [12]

      (12) Hevonoja, T.; Pentikainen, M. O.; Hyvonen, M. T.; Kovanen, P. T.; Ala-Korpela, M. Biochim. Biophys. Acta 2000, 1488, 189.

    13. [13]

      (13) Lu, L.; He, B. L.; Yuan, Z.; Liu, X. H. Ion Exch. Adsorp. 2001, 17, 116.

    14. [14]

      [卢 玲, 何炳林, 袁 直, 刘晓航. 离子交换与吸附, 2001, 17, 116.]

    15. [15]

      (14) Harrison, B. S.; Atala, A. Biomaterials 2007, 28, 344.

    16. [16]

      (15) Agui, L.; Yanez-Sedeno, P.; Pingarron, J. M. Anal. Chim. Acta 2008, 622, 11.

    17. [17]

      (16) Tang, T.; Liu, X. L.; Li, C.; Lei, B.; Zhang, D. H.; Rouhanizadeh, M.; Hsiai, T.; Zhou, C. W. Appl. Phys. Lett. 2005, 86, 103903.

    18. [18]

      (17) Tiwari, A.; ng, S. Q. Electroanalysis 2008, 20, 2119.

    19. [19]

      (18) Dhand, C.; Arya, S. K.; Datta, M.; Malhotra, B. D. Anal. Biochem. 2008, 383, 194.

    20. [20]

      (19) Solanki, P. R.; Kaushik, A.; Ansari, A. A.; Tiwari, A.; Malhotra, B. D. Sens. Actuators B 2009, 137, 727.

    21. [21]

      (20) Yang, Q. H.; Hou, P. X.; Bai, S.; Wang, M. Z.; Cheng, H. M. Chem. Phys. Lett. 2001, 345, 18.

    22. [22]

      (21) Ye, C.; ng, Q. M.; Lu, F. P.; Liang, J. Acta Phys. -Chim. Sin. 2007, 23, 1321.

    23. [23]

      [叶 超, 巩前明, 卢方平, 梁 吉. 物理化报, 2007, 23, 1321.]

    24. [24]

      (22) Lu, Y. M.; ng, Q. M.; Liang, J. Acta Phys. -Chim. Sin. 2009, 25, 1697.

    25. [25]

      [卢月美, 巩前明, 梁 吉. 物理化学学报, 2009, 25, 1697.]

    26. [26]

      (23) Dowding, P. J.; Vincent, B. Colloid. Surf. A 2000, 161, 259.

    27. [27]

      (24) Stephenson, J. J.; Hudson, J. L.; Azad, S.; Tour, J. M. Chem. Mater. 2006, 18, 374.

    28. [28]

      (25) Eklund, P. C.; Holden, J. M.; Jishi, R. A. Carbon 1995, 33, 959.

    29. [29]

      (26) Marquez, A. G. C.; Rodriguez, L. M. T.; Rojas, A. M. Electrochim. Acta 2007, 52, 5294.

    30. [30]

      (27) Yang, J. Y.; Shi, T. J.; Jin, W. Y.; Zou, Y. Acta Chim. Sin. 2008, 66, 552.

    31. [31]

      [杨家义, 史铁钧, 金维亚, 邹 燕. 化学学报, 2008, 66, 552.]

    32. [32]

      (28) Nora, G.; Eda, Y.; Thomas, G.; Andreas, L.; Wilfried, W.; Simone, K.; Terfort, A.; Unger W. E. S. Surf. Sci. 2009, 603, 2849.

    33. [33]

      (29) Zhou, J. M.; Li, H. Y.; Lin, G. D.; Zhang, H. B. Acta Phys. -Chim. Sin. 2010, 26, 3080.

    34. [34]

      [周金梅, 李海燕, 林国栋, 张鸿斌. 物理化学学报, 2010, 26, 3080.]

    35. [35]

      (30) Jin, X. G.; Fu, X. C.; Shen, D. H.; Wang, C. H.; Lin, Z. D.; Karasz, F. E. Chin. Sci. Bull. 1990, 6, 425.

    36. [36]

      [金熹高, 傅秀城, 沈电洪, 王昌衡, 林彰达, Frank E. Karasz. 科学通报, 1990, 6, 425.]

    37. [37]

      (31) Li, F.; Cheng, G. X.; Liang, S. P. Bullutin 2006, 57, 261.

    38. [38]

      (32) Zhang, L.; Zhang, C. H.; Lian, J. Y. Biosen. Bioelectron. 2008, 24, 690.


  • 加载中
    1. [1]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    2. [2]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    3. [3]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    4. [4]

      Shuhong XiangLv YangYingsheng XuGuoxin CaoHongjian Zhou . Selective electrosorption of Cs(Ⅰ) from high-salinity radioactive wastewater using CNT-interspersed potassium zinc ferrocyanide electrodes. Acta Physico-Chimica Sinica, 2025, 41(9): 100097-0. doi: 10.1016/j.actphy.2025.100097

    5. [5]

      Bowen YangRui WangBenjian XinLili LiuZhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 2310024-0. doi: 10.3866/PKU.WHXB202310024

    6. [6]

      Hui WangAbdelkader LabidiMenghan RenFeroz ShaikChuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039

    7. [7]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    8. [8]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    9. [9]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    10. [10]

      Chen PuDaijie DengHenan LiLi Xu . Fe0.64Ni0.36@Fe3NiN Core-Shell Nanostructure Encapsulated in N-Doped Carbon Nanotubes for Rechargeable Zinc-Air Batteries with Ultralong Cycle Stability. Acta Physico-Chimica Sinica, 2024, 40(2): 2304021-0. doi: 10.3866/PKU.WHXB202304021

    11. [11]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    12. [12]

      Xue XiaoJiachun LiXiangtong MengJieshan Qiu . Sulfur-Doped Carbon-Coated Fe0.95S1.05 Nanospheres as Anodes for High-Performance Sodium Storage. Acta Physico-Chimica Sinica, 2024, 40(6): 2307006-0. doi: 10.3866/PKU.WHXB202307006

    13. [13]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    14. [14]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    15. [15]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    16. [16]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    17. [17]

      Wei Li Jinfan Xu Yongjun Zhang Ying Guan . 共价有机框架整体材料的制备及食品安全非靶向筛查应用——推荐一个仪器分析综合化学实验. University Chemistry, 2025, 40(6): 276-285. doi: 10.12461/PKU.DXHX202406013

    18. [18]

      Xiaojun LiuLang QinYanlei Yu . Dynamic Manipulation of Photonic Bandgaps in Cholesteric Liquid Crystal Microdroplets for Applications. Acta Physico-Chimica Sinica, 2024, 40(5): 2305018-0. doi: 10.3866/PKU.WHXB202305018

    19. [19]

      Sumiya Akter DristyMd Ahasan HabibShusen LinMehedi Hasan JoniRutuja MandavkarYoung-Uk ChungMd NajibullahJihoon Lee . Exploring Zn doped NiBP microspheres as efficient and stable electrocatalyst for industrial-scale water splitting. Acta Physico-Chimica Sinica, 2025, 41(7): 100079-0. doi: 10.1016/j.actphy.2025.100079

    20. [20]

      Gaofeng Zeng Shuyu Liu Manle Jiang Yu Wang Ping Xu Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055

Metrics
  • PDF Downloads(1485)
  • Abstract views(3756)
  • HTML views(20)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return