Citation: MU Dan, ZHOU Yi-Han. Molecular Dynamics Simulation of the Adsorption and Diffusion of a Single Hydrophobic Polymer Chain on a Hydrophobic Surface[J]. Acta Physico-Chimica Sinica, ;2011, 27(02): 374-378. doi: 10.3866/PKU.WHXB20110229 shu

Molecular Dynamics Simulation of the Adsorption and Diffusion of a Single Hydrophobic Polymer Chain on a Hydrophobic Surface

  • Received Date: 20 September 2010
    Available Online: 5 January 2011

    Fund Project: 山东省优秀中青年科学家科研奖励基金计划(BS2010CL048) (BS2010CL048)山东省教育厅高等学校科技计划项目(J10LA61) (J10LA61)枣庄市科技攻关项目(200924-2)资助项目 (200924-2)

  • The adsorption and diffusion of polyethylene (PE) with different degrees of polymerization (N) on a silicon (111) surface were studied by molecular dynamics simulations. The relative dielectric constant was selected to be 1 and 78 to mimic a vacuum and a solution environment, respectively. The chains were all present as two-dimensional (2D) adsorption conformation on the surface but different conformations and dynamic properties were found in the two absolutely different environments. This shows that the solvent plays an obvious role in the chain adsorption and diffusion processes on a hydrophobic surface. The relationship between the adsorption energy and the degree of polymerization follows a linear function and the average adsorption energy per segment is -0.38 kJ·mol-1. In addition, the diffusion coefficient (D) of these chains scales with the degree of polymerization as N-3/2.

  • 加载中
    1. [1]

      (1) de Gennes, P. G. Scaling Concepts in Polymer Physics; Cornell University Press: Ithaca, NY, 1979.

    2. [2]

      (2) Doi, M.; Edwards, S. F. The Theory of Polymer Dynamics; Clarendon Press: Oxford, UK, 1986.

    3. [3]

      (3) Mu, D.; Lu, Z. Y.; Huang, X. R.; Sun, C. C. Chem. J. Chin. Univ. 2008, 29(10), 2065.

    4. [4]

      [牟 丹, 吕中元, 黄旭日, 孙家钟. 高等学校化学学报, 2008, 29 (10), 2065.]

    5. [5]

      (4) Esker, A. R.; Mengel, C.; Wegner, G. Science 1998, 280, 892.

    6. [6]

      (5) Shiratori, S. S.; Rubner, M. F. Macromolecules 2000, 33, 4213.

    7. [7]

      (6) Huck, W. T. S.; Strook, A. D.; Whiteside, G. M. Angew. Chem. Int. Edit. 2000, 39, 1058.

    8. [8]

      (7) Clark, S. L.; Hammond, P. T. Adv. Mater. 1998, 10, 1515.

    9. [9]

      (8) Husemann, M.; Morrison, M.; Benoit, D. Frommer, J.; Mate, C. M.; Hinsberg, W. D.; Hedrick, J. L.; Hawker, C. J. J. Am. Chem. Soc. 2000, 122, 1844.

    10. [10]

      (9) Xia, Y. N.; Whitesides, G. M. Annu. Rev. Mater. Sci. 1998, 28, 153.

    11. [11]

      (10) Briggman, K. A.; Stephenson, J. C.; Wallace, W. E.; Richter, L. J. J. Phys. Chem. B 2001, 105, 2785.

    12. [12]

      (11) Sukhishvili, S. A.; Chen, Y.; Müller, J. D.; Gratton, E.; Schweizer, K. S.; Granick, S. Macromolecules 2002, 35, 1776.

    13. [13]

      (12) Zhao, J.; Granick, S. J. Am. Chem. Soc. 2004, 126, 6242.

    14. [14]

      (13) Maier, B.; Rädler, J. O. Phys. Rev. Lett. 1999, 82, 1911.

    15. [15]

      (14) Maier, B.; Rädler, J. O. Macromolecules 2000, 33, 7185.

    16. [16]

      (15) Milchev, A.; Binder, K. Macromolecules 1996, 29, 343.

    17. [17]

      (16) Azuma, R.; Takayama, H. J. Chem. Phys. 1999, 111, 8666.

    18. [18]

      (17) Falck, E.; Punkkinen, O.; Vattulainen, I.; Ala-Nissila, T. Phys. Rev. E 2003, 68, 050102

    19. [19]

      (18) Sun, H. J. Phys. Chem. B 1998, 102, 7338.

    20. [20]

      (19) Sun, H.; Ren, P.; Fried, J. R. Comput. Theor. Polym. Sci. 1998, 8, 229.

    21. [21]

      (20) Rigby, D.; Sun, H.; Eichinger, B. E. Polym. Int. 1997, 44, 311.

    22. [22]

      (21) Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids; Clarendon: Oxford, UK, 1987.

    23. [23]

      (22) Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W. F.; Dinola, A.; Haak, J. R. J. Chem. Phys. 1984, 81, 3684.

    24. [24]

      (23) Mu, D.; Huang, X. R.; Sun, C. C. Molecular Simulation 2008, 34(6), 611.

    25. [25]

      (24) Wang, X. L.; Lu, Z. Y.; Li, Z. S.; Sun, C. C. J. Phys. Chem. B 2005, 109, 17644.

    26. [26]

      (25) Raffaini, G.; Ganazzoli, F. Langmuir 2004, 20, 3371.


  • 加载中
    1. [1]

      Yangrui Xu Yewei Ren Xinlin Liu Hongping Li Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032

    2. [2]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Preparation of Superhydrophobic Surfaces and Their Application in Oily Wastewater Treatment: Design of a Comprehensive Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(2): 34-40. doi: 10.3866/PKU.DXHX202307081

    3. [3]

      Yuhui Yang Jintian Luo Biao Zuo . A Teaching Approach to Polymer Surface and Interface in Undergraduate Polymer Physics Courses. University Chemistry, 2025, 40(4): 126-130. doi: 10.12461/PKU.DXHX202408056

    4. [4]

      Shiyang He Dandan Chu Zhixin Pang Yuhang Du Jiayi Wang Yuhong Chen Yumeng Su Jianhua Qin Xiangrong Pan Zhan Zhou Jingguo Li Lufang Ma Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046

    5. [5]

      Pingping Zhu Yongjun Xie Yuanping Yi Yu Huang Qiang Zhou Shiyan Xiao Haiyang Yang Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063

    6. [6]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    7. [7]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    8. [8]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    9. [9]

      Huanhuan XIEYingnan SONGLei LI . Two-dimensional single-layer BiOI nanosheets: Lattice thermal conductivity and phonon transport mechanism. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 702-708. doi: 10.11862/CJIC.20240281

    10. [10]

      Haiyu Zhu Zhuoqun Wen Wen Xiong Xingzhan Wei Zhi Wang . Accurate and efficient prediction of Schottky barrier heights in 2D semimetal/silicon heterojunctions. Acta Physico-Chimica Sinica, 2025, 41(7): 100078-. doi: 10.1016/j.actphy.2025.100078

    11. [11]

      Wen-Bing Hu . Systematic Introduction of Polymer Chain Structures. University Chemistry, 2025, 40(4): 15-19. doi: 10.3866/PKU.DXHX202401014

    12. [12]

      Xiyuan Su Zhenlin Hu Ye Fan Xianyuan Liu Xianyong Lu . Change as You Want: Multi-Responsive Superhydrophobic Intelligent Actuation Material. University Chemistry, 2024, 39(5): 228-237. doi: 10.3866/PKU.DXHX202311059

    13. [13]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    14. [14]

      Runhua Chen Qiong Wu Jingchen Luo Xiaolong Zu Shan Zhu Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052

    15. [15]

      Huayan Liu Yifei Chen Mengzhao Yang Jiajun Gu . Strategies for enhancing capacity and rate performance of two-dimensional material-based supercapacitors. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-. doi: 10.1016/j.actphy.2025.100063

    16. [16]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    17. [17]

      Wenbing Hu Jin Zhu . Flipped Classroom Approach in Teaching Professional English Reading and Writing to Polymer Graduates. University Chemistry, 2024, 39(6): 128-131. doi: 10.3866/PKU.DXHX202310015

    18. [18]

      Pingsheng He Haiyang Yang Pingping Zhu . Philosophical Reflections in Polymer Physics Course: Emphasizing Reverse Thinking. University Chemistry, 2025, 40(4): 27-32. doi: 10.3866/PKU.DXHX202403029

    19. [19]

      Rui Xu Wei Li Tianyi Li . Exploration of Teaching Reform in the Course of “Principles of Chemical Engineering” in the Polymer Materials and Engineering Major. University Chemistry, 2025, 40(4): 54-58. doi: 10.12461/PKU.DXHX202404081

    20. [20]

      Chunyang Bao Ruoxuan Miao Yuhan Ding Qingfu Ban Yusheng Qin Jie Liu Zhirong Xin . The Comprehensive Experiment Design of Preparation of Depolymerizable Thermosetting Polymers. University Chemistry, 2025, 40(4): 59-65. doi: 10.12461/PKU.DXHX202405087

Metrics
  • PDF Downloads(1409)
  • Abstract views(2656)
  • HTML views(46)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return