Citation: HU Jian-Ping, WANG Jun, TANG Dian-Yong, FU Qin-Chao, ZHANG Yuan-Qin. Reaction Mechanisms of CO Oxidation Catalyzed by Binary Copper Group Cluster Anions[J]. Acta Physico-Chimica Sinica, ;2011, 27(02): 329-336. doi: 10.3866/PKU.WHXB20110226 shu

Reaction Mechanisms of CO Oxidation Catalyzed by Binary Copper Group Cluster Anions

  • Received Date: 25 August 2010
    Available Online: 5 January 2011

    Fund Project: 教育部科学技术研究重点项目(210189) (210189) 四川省自然科学基金(2008JY0119) (2008JY0119)四川省教育厅(07ZA158)资助 (07ZA158)

  • The detailed mechanisms of CO oxidation catalyzed by AuAg-, AuCu-, and AgCu- were investigated using density functional theory at the B3LYP level. The computational results indicate that the adsorption site of CO onto the mixed clusters decreases as follows: Cu>Au>Ag. Copper is the preferred adsorption site for O2 on the binary clusters. The adsorption of O2 onto ld was found to be the weakest. Three reaction pathways exist for CO oxidation catalyzed by AuAg-, AuCu-, and AgCu-. The most feasible pathway for CO oxidation catalyzed by AuAg- is CO insertion into the Ag―O bond of AuA 2- to produce the [Au―AgC(O―O)O]- intermediate, which then decomposes into CO2 and AuA -, or another CO molecule attacks [Au―AgC(O―O)O]- to form two CO2 molecules and AuAg- anion. A feasible pathway for CO oxidation catalyzed by AuCu- or AgCu- is initiated by the co-absorption of CO and O2 onto the clusters followed by the formation of a four-membered ring intermediate to produce the corresponding products. The cooperation effect of the second CO is very weak. The catalytic activities of AuAg- and AuCu- toward CO oxidation are stronger than that of Au2- . Doping the Au clusters with Ag and Cu increases the catalytic activity. These results are in agreement with the previous experimental results.

  • 加载中
    1. [1]

      1 Min, B. K.; Friend, C. M. Chem. Rev. 2007, 107, 2709, and references therein.

    2. [2]

      2 Zhang, X.; Xu, B. Q. Acta Chim. Sin. 2005, 63, 86.

    3. [3]

      [张 鑫, 徐柏庆. 化学学报, 2005, 63, 86.]

    4. [4]

      3 Shao, J. J.; Zhang, P.; Song, W.; Huang, X. M.; Xu, Y. D.; Shen, W. J. Acta Chim. Sin. 2007, 65, 2007.

    5. [5]

      [邵建军, 张 平, 宋 巍, 黄秀敏, 徐奕德, 申文杰. 化学学报, 2007, 65, 2007.]

    6. [6]

      4 Chen, M.; odman, D. W. Acc. Chem. Res. 2006, 39, 739.

    7. [7]

      5 Bowker, M. Chem. Soc. Rev. 2008, 37, 2204.

    8. [8]

      6 Campbell, C. T. Science 2004, 306, 234.

    9. [9]

      7 Reveles, J. U.; Johnson,G. E.; Khanna, S. N.; Castleman, A. W., Jr. J. Phys. Chem. C 2010, 114, 5438.

    10. [10]

      8 Xue, W.; Wang, Z. C.; He, S. G.; Xie, Y.; Bernstein, E. R. J. Am. Chem. Soc. 2008, 130, 15879.

    11. [11]

      9 Wang, A. Q.; Liu, J. H.; Lin, S. D.; Lin, T. S.; Mou, C. Y. J. Catal. 2005, 233, 186.

    12. [12]

      10 Wang, A. Q.; Chang, C. M.; Mou, C. Y. J. Phys. Chem. B 2005, 109, 18860.

    13. [13]

      11 Liu, X.; Wang, A. Q.; Wang, X.; Mou, C. Y.; Zhang, T. Chem. Commun. 2008, No. 27, 3187.

    14. [14]

      12 Yen, C. W.; Lin, M. L.; Wang, A.; Chen, S. A.; Chen, J. M.; Mou, C. Y. J. Phys. Chem. C 2009, 113, 17831.

    15. [15]

      13 Wang, A. Q.; Hsieh, Y. P.; Chen, Y. F.; Mou, C. Y. J. Catal. 2006, 237, 197.

    16. [16]

      14 Liu, J. H.; Wang, A. Q.; Chi, Y. S.; Lin, H. P.; Mou, C. Y. J. Phys. Chem. B 2005, 109, 40.

    17. [17]

      15 Liu, X.; Wang, A. Q.; Yang, X. F.; Zhang, T.; Mou, C. Y.; Su, D. S.; Li, J. J. Chem. Mater. 2009, 21, 410.

    18. [18]

      16 Wittstock, A.; Neumann, B.; Schaefer, A.; Dumbuya, K.; Kübel, C.; Biener, M. M.; Zielasek, V.; Steinrück, H. P.; ttfried, J. M.; Biener, J.; Hamza, A.; B?umer, M. J. Phys. Chem. C 2009, 113, 5593.

    19. [19]

      17 Bernhardt, T. M.; Socaciu-Siebert, L. D.; Hagen, J.; Wöste, L. Appl. Catal. A-Gen. 2005, 291, 170.

    20. [20]

      18 Mitri?, R.; Burda, J.; Bona?i?-Koutecký, V.; Fantucci, P. Euro. Phys. J. D 2003, 24, 41.

    21. [21]

      19 Chang, C. M.; Cheng, C.; Wei, C. M. J. Chem. Phys. 2008, 128, 124710.

    22. [22]

      20 Gao, Y.; Shao, N.; Pei, Y.; Zeng, X. C. Nano Lett. 2010, 10, 1055.

    23. [23]

      21 Kimble, M. L.; Moore, N. A.; Johnson, G. E.; Castleman, A. W. J. Chem. Phys. 2006, 125, 204311.

    24. [24]

      22 Tang, D. Y.; Zhang, Y. Q.; Hu, C. W. Acta Chim. Sin. 2008, 66, 1501.

    25. [25]

      [唐典勇, 张元勤, 胡常伟. 化学学报, 2008, 66, 1501.]

    26. [26]

      23 Tang, D. Y.; Hu, J. P., Zhang, Y. Q., Hu, C. W. Acta Chim. Sin. 2009, 67, 1859.

    27. [27]

      [唐典勇, 胡建平, 张元勤, 胡常伟. 化学学报, 2009, 67, 1859.]

    28. [28]

      24 Dholabhai, P. P.; Wu, X.; Ray, A. K. J. Mol. Struct.-Theochem 2005, 723, 139.

    29. [29]

      25 Tang, D. Y.; Hu, J. P.; Zhang, Y. Q.; Hu, C. W. Acta Chim. Sin. 2010, 68, 1379.

    30. [30]

      [唐典勇, 胡建平, 张元勤, 胡常伟. 化学学报, 2010, 68, 1379.]

    31. [31]

      26 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al. Gaussian 03, Revision E.01; Gaussian Inc.: Pittsburgh, PA, 2004.

    32. [32]

      27 Couty, M.; Hall, M. B. J. Comput. Chem. 1996, 17, 1359.

    33. [33]

      28 Ehlers, A. W.; Dapprich, B. S.; bbi, A.; Hollwarth, A.; Jonas, V.; Kohler, K. F.; Stegmann, R.; Veldkamp, A.; Frenking, G. Chem. Phys. Lett. 1993, 208, 111.

    34. [34]

      29 Ojifinni, R. A.; ng, J.; Froemming, N. S.; Flaherty, D. W.; Pan, M.; Henkelman, G.; Mullins, C. B. J. Am. Chem. Soc. 2008, 130, 11250.

    35. [35]

      30 Wang, F.; Zhang, D.; Xu, X.; Ding, Y. J. Phys. Chem. C 2009, 113, 18032.


  • 加载中
    1. [1]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    2. [2]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    3. [3]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    4. [4]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    5. [5]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    6. [6]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    7. [7]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    8. [8]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    9. [9]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    10. [10]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    11. [11]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    12. [12]

      Zhi Chai Huashan Huang Xukai Shi Yujing Lan Zhentao Yuan Hong Yan . Wittig反应的立体选择性. University Chemistry, 2025, 40(8): 192-201. doi: 10.12461/PKU.DXHX202410046

    13. [13]

      Bolin Sun Jie Chen Ling Zhou . 乙烯型卤代烃的亲核取代反应. University Chemistry, 2025, 40(8): 152-157. doi: 10.12461/PKU.DXHX202410032

    14. [14]

      Xiaochen ZhangFei YuJie Ma . Cutting-Edge Applications of Multi-Angle Numerical Simulations for Capacitive Deionization. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-0. doi: 10.3866/PKU.WHXB202311026

    15. [15]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    16. [16]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    17. [17]

      Guowen Xing Guangjian Liu Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058

    18. [18]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    19. [19]

      Lancanghong Chen Xingtai Yu Tianlei Zhao Qizhi Yao . Exploration of Abnormal Phenomena in Iodometric Copper Quantitation Experiment. University Chemistry, 2025, 40(7): 315-320. doi: 10.12461/PKU.DXHX202408089

    20. [20]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

Metrics
  • PDF Downloads(1194)
  • Abstract views(3606)
  • HTML views(55)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return