Citation: TIAN Ying, YAN Jing-Wang, XUE Rong, YI Bao-Lian. Influence of Electrolyte Concentration and Temperature on the Capacitance of Activated Carbon[J]. Acta Physico-Chimica Sinica, ;2011, 27(02): 479-485. doi: 10.3866/PKU.WHXB20110221 shu

Influence of Electrolyte Concentration and Temperature on the Capacitance of Activated Carbon

  • Received Date: 24 August 2010
    Available Online: 4 January 2011

    Fund Project:

  • The influences of electrolyte concentration and temperature on the capacitive behavior of activated carbon (AC) were investigated by cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic charge/discharge measurements. The performance of a symmetric capacitor was characterized in 0.1, 0.5, 1.0, and 6.0 mol·L-1 KOH solution. We found that the high electrolyte concentration led to high capacitance, low internal resistance, and a narrow voltage window. The capacitance and internal resistance were found to be linearly dependent on the logarithm of KOH concentration. AC supercapacitor performance was investigated at 20, 40 and 80 °C, respectively. We found that elevated temperatures are favorable for an increase in capacitance and for a decrease in internal resistance. However, elevated temperatures increase the capacitance fading rate during long charge/discharge cycling tests.

  • 加载中
    1. [1]

      (1) Li, W.; Chen, D.; Li. Z.; Shi, Y.; Wan, Y.; Huang, J.; Yang, J.; Zhao, D.; Jiang, Z. Electrochem. Commun. 2007, 9, 569.

    2. [2]

      (2) Huang, J. S.; Sumpter, B. G.; Meunier, V. Chem. Eur. J. 2008, 14, 6614.

    3. [3]

      (3) Miller, J. R.; Simmon, P. Science 2008, 321, 651.

    4. [4]

      (4) Chmiola, J.; Yushin, G.; tsi, Y.; Portet, C.; Simmon, P.; Taberna, P. L. Science 2006, 313, 1760.

    5. [5]

      (5) Wang, D. W.; Li, F.; Liu, M.; Cheng, H. M. New Carbon Mater. 2007, 22, 307.

    6. [6]

      (6) Hishihara, H.; Fukura, Y.; Inde, K.; Tsuji, K.; Takeuchi, M.; Kyatani, T. Carbon 2008, 46, 48.

    7. [7]

      (7) Sevilla, M.; Alvarez, S.; Centeno, T. A.; Fuetes, A. B.; Stoeckli, F. Electrochim. Acta 2007, 52, 3207.

    8. [8]

      (8) Fang, B.; Binder, L. J. Phys. Chem C 2006, 110, 7877.

    9. [9]

      (9) Masarapu, C.; Zeng, H. F.; Hung, K. H.; Wei, B. O. ACS Nano 2009, 3, 2199.

    10. [10]

      (10) Yuan, C. Z,; Zhang, X. G.; Wu, O. F.; Gao, B. Solid State Ion. 2006, 177, 1237.

    11. [11]

      (11) Kotz, R.; Hahn, M.; Gallay, R. J. Power Sources 2006, 154, 550.

    12. [12]

      (12) Hung, K.; Masarapu, C.; Ko, T.; Wei, B. J. Power Sources 2009, 193, 944.

    13. [13]

      (13) Liu, P.; Verbrugge, M.; Soukiazian, S. J. Power Sources 2006, 156, 712.

    14. [14]

      (14) Wang, D. W.; Li, F.; Chen, Z. G.; Lu, G. Q.; Cheng, M. M. Chem. Mater. 2008, 20, 7195.

    15. [15]

      (15) Ruiz, V.; Malmberg, H.; Blaco, C.; Lundblad, A.; Bjornbor1n, P.; Santamaria, R. J. Electroanal. Chem. 2008, 618, 33.

    16. [16]

      (16) Jurevicz, K.; Pietrzak, R.; Nowicki, P.; Wachowdka, H. Electrochim. Acta 2008, 53, 5469.

    17. [17]

      (17) Fuertes, A. B.; Lota, G.; Centeno, T. A.; Frackowiak, E. Electrochim. Acta 2005, 50, 2799.

    18. [18]

      (18) Brousse, T.; Toupin, M.; Belanger, D. J. Electrochem. Soc. 2004, 151, A614.

    19. [19]

      (19) Khomenko, V.; Raymundo-Pinew, E.; Beguin, F. J. Power Sources 2006, 153, 183.

    20. [20]

      (20) Xu, C.; Li. B.; Du. H.; Kang. F.; Zeng, Y. J. Power Sources, 2008, 184, 691.

    21. [21]

      (21) Azais, P.; Duclaux, L.; Florian, P.; Massiot, D.; Lillo-Rodenas, M. A.; Linares-Solano, A.; Peres, J. P.; Jehoulet, C.; Beguin, F. J. Power Sources 2007, 171, 1046.

    22. [22]

      (22) Briate, H. E.; Vinassa, J. M.; Henry, H.; Woirgarol, E. Microelectro. Reliab. 2009, 49, 1391.

    23. [23]

      (23) Fenandez, J. A.; Temmison, S.; Rubiera, F.; Stoedkli, F.; Centeno, T. A. Carbon 2009, 47, 1598.

    24. [24]

      (24) Zhao, J. C.; Lai, C. Y.; Dai, Y.; Xie, J. Y. Mater. Lett. 2007, 61, 4639.

    25. [25]

      (25) Xie, Y. B.; Yiao, W. M.; Zhang, W. Y.; Sun, G. W.; Ling, L. C. New Carbon Mater. 2010, 25, 248.

    26. [26]

      [谢立波, 乔文明, 张维燕, 孙刚成, 凌立成. 新型炭材料, 2010, 25, 248.]

    27. [27]

      (26) Wang, L. H.; Toyoda, M.; Inagaki, M. New Carbon Mater. 2008, 23, 111.

    28. [28]

      [王立红, 田昌宏, 稻埂道夫. 新型炭材料, 2008, 23, 111.]

    29. [29]

      (27) Liu, Y. F.; Hu, Z. H.; Xu, K.; Zheng, X. W.; Gao, Q. Acta Phys. -Chim. Sin. 2008, 23, 111

    30. [30]

      [刘亚菲, 胡中华, 许 琨, 郑祥伟, 高 强. 物理化学学报, 2008, 23, 111.]

    31. [31]

      (28) Zhuang, X. G.; Yang, Y. S.; Ji, Y. J.; Yang, D. P.; Tang, Z. Y. Acta Phys.-Chim. Sin. 2003, 19, 689.

    32. [32]

      [庄新国, 杨裕生, 嵇友菊, 杨冬平, 唐致远. 物理化学学报, 2003, 19, 689.]

    33. [33]

      (29) Zhu, M.; Webber, C. J.; Yang, Y.; Konuma, M.; Starke, U.; Kern, K.; Bittner, A. M. Carbon 2008, 46, 1829.


  • 加载中
    1. [1]

      Qiqi LiSu ZhangYuting JiangLinna ZhuNannan GuoJing ZhangYutong LiTong WeiZhuangjun Fan . Preparation of High Density Activated Carbon by Mechanical Compression of Precursors for Compact Capacitive Energy Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-0. doi: 10.3866/PKU.WHXB202406009

    2. [2]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    3. [3]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    4. [4]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    5. [5]

      Huayan LiuYifei ChenMengzhao YangJiajun Gu . Strategies for enhancing capacity and rate performance of two-dimensional material-based supercapacitors. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-0. doi: 10.1016/j.actphy.2025.100063

    6. [6]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    7. [7]

      Qing XueShengyi LiYanan ZhaoPeng ShengLi XuZhengxi LiBo ZhangHui LiBo WangLibin YangYuliang CaoZhongxue Chen . Novel Alkaline Sodium-Ion Battery Capacitor Based on Active Carbon||Na0.44MnO2 towards Low Cost, High-Rate Capability and Long-Term Lifespan. Acta Physico-Chimica Sinica, 2024, 40(2): 2303041-0. doi: 10.3866/PKU.WHXB202303041

    8. [8]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    9. [9]

      Huimin LiuKezhi LiXin ZhangXuemin YinQiangang FuHejun Li . SiC Nanomaterials and Their Derived Carbons for High-Performance Supercapacitors. Acta Physico-Chimica Sinica, 2024, 40(2): 2304026-0. doi: 10.3866/PKU.WHXB202304026

    10. [10]

      Yingtong FANYujin YAOShouhao WANYihang SHENXiang GAOCuie ZHAO . Construction of copper tetrakis(4-carboxyphenyl)porphyrin/silver nanowire composite electrode for flexible and transparent supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1309-1317. doi: 10.11862/CJIC.20250043

    11. [11]

      Hanmei LüXin ChenQifu SunNing ZhaoXiangxin Guo . Uniform Garnet Nanoparticle Dispersion in Composite Polymer Electrolytes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305016-0. doi: 10.3866/PKU.WHXB202305016

    12. [12]

      Xinran Zhang Siqi Liu Yichi Chen Qingli Zou Qinghong Xu Yaqin Huang . From Protein to Energy Storage Materials: Edible Gelatin Jelly Electrolyte. University Chemistry, 2025, 40(7): 255-266. doi: 10.12461/PKU.DXHX202408104

    13. [13]

      Jiandong LiuZhijia ZhangKamenskii MikhailVolkov FilippEliseeva SvetlanaJianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 2308048-0. doi: 10.3866/PKU.WHXB202308048

    14. [14]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    15. [15]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    16. [16]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    17. [17]

      Huirong BAOJun YANGXiaomiao FENG . Preparation and electrochemical properties of NiCoP/polypyrrole/carbon cloth by electrodeposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1083-1093. doi: 10.11862/CJIC.20250008

    18. [18]

      Hongren RONGGexiang GAOZhiwei LIUKe ZHOULixin SUHao HUANGWenlong LIUQi LIU . High-performance supercapacitor based on 1D cobalt-based coordination polymer. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1183-1195. doi: 10.11862/CJIC.20250034

    19. [19]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    20. [20]

      Changsheng AnTao Liu . Decoding SEI chemistry at the lithium-metal potential. Acta Physico-Chimica Sinica, 2025, 41(9): 100101-0. doi: 10.1016/j.actphy.2025.100101

Metrics
  • PDF Downloads(1598)
  • Abstract views(3984)
  • HTML views(53)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return