Citation: WANG Dan, ZHANG Yan-Ling, QIAO Yan-Jiang. Support Vector Machine and KStar Models Predict the o-Dealkylation Reaction Mediated by Cytochrome P450[J]. Acta Physico-Chimica Sinica, ;2011, 27(02): 343-351. doi: 10.3866/PKU.WHXB20110219 shu

Support Vector Machine and KStar Models Predict the o-Dealkylation Reaction Mediated by Cytochrome P450

  • Received Date: 13 September 2010
    Available Online: 29 December 2010

    Fund Project: 教育部博士点基金(20092213120006) (20092213120006)中医药行业专项(200707010)资助项目 (200707010)

  • We constructed a nested prediction model based on support vector machines (SVM) and the KStar method. The models consisted of a molecular shape discriminative model for metabolites, which was used to predict the o-dealkalytion reaction mediated by cytochrome P450, in addition to the metabolic site discriminative model, which was used to judge C―O bond breaking in molecules. We calculated 1280 molecular descriptors including topological descriptors, 2D autocorrelation descriptors, and geometric descriptors to characterize the physicochemical properties of 272 molecules. A molecular shape discriminative model, represented by the classification models, was constructed by machine learning methods including SVM, decision tree, Bayesian network, and k nearest neighbors method. The results showed that the SVM model was superior to the other methods. Twenty-six quantum chemical features including charge-related, valency-related, and energy-related features were calculated for the 538 metabolism sites for the o-dealkylation reaction in the metabolic site discriminative model. Machine learning methods including decision tree, Bayesian network, KStar, and the artificial neural network method were also used to develop classification models. It showed that the KStar model with its prediction accuracy, sensitivity, and specificity of more than 90% outperformed the other classification models. Fifteen traditional Chinese medicine medicinal molecules were used to validate the model. The results showed that the nested models had a certain accuracy and could contribute to the prediction of metabolites from traditional Chinese medicines.

  • 加载中
    1. [1]

      (1) Nelson, D. R.; Kamataki, T.;Waxman, D. J.; Guengerich, F. P.; Estabrook, R.W.; Feyereisen, R.; nzalez, F. J.; Coon, M. J.; Gunsalus, I. C.; toh, O.; Okuda, K.; Nebert, D.W. DNA Cell Biol. 1993, 12(1), 1.

    2. [2]

      (2) Ingelman-Sundberg, M. Toxicol. Appl. Pharmacol. 2005, 207(2), 52.

    3. [3]

      (3) Lin,W. X. Asia-Pacific Traditional Medicine 2009, 5(7), 5.

    4. [4]

      [林伟香. 亚太传统医药, 2009, 5(7), 5.]

    5. [5]

      (4) Embrechts, M. J.; Ekins, S. Drug Metab. Dispos. 2007, 35(3), 325.

    6. [6]

      (5) Zheng, M. Y.; Luo, X. M.; Shen, Q. C.;Wang, Y.; Du, Y.; Zhu, W. L.; Jiang, H. L. Bioinformatics 2009, 25, 1251.

    7. [7]

      (6) MDL Metabolite Database, 2010; MDL Information Systems, Inc.: California, 2010.

    8. [8]

      (7) MDDR, 2010; MDL Information Systems and Prous Science, Inc.: California, 2010.

    9. [9]

      (8) TsarTM, 3.3; Oxford Molecular Limited: England, 2000.

    10. [10]

      (9) Todeschini, R.; Consonni, V.; Pavan, M. Dra n, 2.1; Milano Chemometrics and QSAR Research Group: Milano, 2002.

    11. [11]

      (10) Todeschini, R.; Consonni, V. Handbook of Molecular Descriptors; Wiley-VCH:Weinheim, 2000.

    12. [12]

      (11) Weka, 3.6.0; The university ofWaikato: New Zealand, 2008.

    13. [13]

      (12) Witten, L. H.; Frank, E. Data Mining Practical Machine Learning Tools and Techniques, 2nd ed; China Machine Press: Beijing, 2006; pp 282-283; translated by Dong, L., Qiu, Q., Yu, X. F.,Wu, S. Q., Sun, L. Y.

    14. [14]

      [Witten, L. H.; Frank, E. 数据挖 掘: 实用机器学习技术. 董琳, 邱泉, 于晓峰, 吴韶群, 孙 立俊, 译. 北京: 机械工业出版社, 2006: 282-283.]

    15. [15]

      (13) Galvão, R. K. H.; Araujo, M. C. U.; José, J. E.; Pontes, M. J. C.; Silva, E. C.; Saldanha, T. C. B.Talanta 2005, 67, 736.

    16. [16]

      (14) Vapink, V. The Nature of Statistical Learning Theory; Springer Verlag: New York, 2000.

    17. [17]

      (15) Yang, Y.; Zhang, Y. L.; Qiao, Y. J. World Science and Technology-Modernization of Traditional Chinese Medicine 2009, 11, 783.

    18. [18]

      [杨晔, 张燕玲, 乔延江. 世界科学技术-中医 药现代化, 2009, 11, 783.]

    19. [19]

      (16) Liu, R. X.; Shi, X. Y.; Qiao, Y. J. Chinese Journal of Experimental Traditional Medical Formulae 2009, 15(6), 89.

    20. [20]

      [刘瑞新, 史新元, 乔延江. 中国实验方剂学杂志, 2009, 15(6), 89.]

    21. [21]

      (17) Lin, Z. R. Libsvm, 2.9; National Taiwan University: Taiwan, 2009.

    22. [22]

      (18) Fu, Y. Y.; Ren, D. Science and Technology Innovation Herald, 2010, No. 9, 6.

    23. [23]

      [付元元, 任东. 科技创新导报, 2010, No. 9, 6.]

    24. [24]

      (19) Stewart, J. J. P. Mopac, 2009; Stewart Computational Chemistry: Colorado Springs, 2009.

    25. [25]

      (20) Cleary, J. G.; Trigg, L. E. K. An Instance-based Learner Using an Entropic Distance Measure. In Proceedings of the 12th International Conference on Machine Learning, 12th International Conference on Machine Learning, California, 1995; Morgan Kaufmann, Eds.; Morgan Kaufmann: San Francisco, 1995; pp108-114.

    26. [26]

      (21) McLachlan, G. J.; Do, K.A.; Ambroise, C. Analyzing Microarray Gene Expression Data;Wiley: New York, 2004.

    27. [27]

      (22) Yang, X.W. Absorption, Distribution, Metabolism, Excretion, Toxicity and Activity of the Chemical Constituents in Traditional Chinese Medicines; China Medical Science and Technology Press: Beijing, 2006.

    28. [28]

      [杨秀伟. 中药成分的吸收 分布代谢排泄毒性及药效. 北京: 中国医药科技出版社, 2006.]

    29. [29]

      (23) Sangster, S. A.; Caldwell, J.; Smith, R. L.; Farmer, P. B. Food Chem. Toxicol. 1984, 22, 695.

    30. [30]

      (24) Sangster, S. A.; Caldwell, J.; Smith, R. L. Food Chem. Toxicol. 1984, 22, 707.

    31. [31]

      (25) Vincenzi, M.; Maialetti, F.; Scazzocchio, B.; Silano, M. Fitoterapia 2000, 71, 725.


  • 加载中
    1. [1]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

    2. [2]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    3. [3]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    4. [4]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

    5. [5]

      Guowen Xing Guangjian Liu Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058

    6. [6]

      Daojuan Cheng Fang Fang . Exploration and Implementation of Science-Education Integration in Organic Chemistry Teaching for Pharmacy Majors: A Case Study on Nucleophilic Substitution Reactions of Alkyl Halides. University Chemistry, 2024, 39(11): 72-78. doi: 10.12461/PKU.DXHX202403105

    7. [7]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    8. [8]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    9. [9]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    10. [10]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    11. [11]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    12. [12]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    13. [13]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    14. [14]

      Chunyang Zheng Shiyu Liu Nuo Yi Hong Shang . The Adventures in the Kingdom of Plant Pigments. University Chemistry, 2024, 39(9): 170-176. doi: 10.3866/PKU.DXHX202308085

    15. [15]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    16. [16]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    17. [17]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    18. [18]

      Zhaoxin LIRuibo WEIMin ZHANGZefeng WANGJing ZHENGJianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235

    19. [19]

      Quanliang Chen Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133

    20. [20]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

Metrics
  • PDF Downloads(1231)
  • Abstract views(2544)
  • HTML views(29)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return