Citation: WANG Zhi-Qiang, SUN Wen-Jing, CHU Wei, YU Liang-Jun. Reaction Mechanism and Solvent Effects of Styrene Epoxidation with Hydrogen Peroxide[J]. Acta Physico-Chimica Sinica, ;2011, 27(02): 322-328. doi: 10.3866/PKU.WHXB20110218 shu

Reaction Mechanism and Solvent Effects of Styrene Epoxidation with Hydrogen Peroxide

  • Received Date: 25 August 2010
    Available Online: 29 December 2010

    Fund Project: 国家重点基础研究发展计划项目(973) (2011CB201202)资助 (973) (2011CB201202)

  • In this paper, styrene epoxidation with hydrogen peroxide was used as a model reaction. The Dmol3 implementation in the Materials Studio Software was used to simulate the mechanism of the model reaction. Solvent effects in the reaction were also studied using the conductor-like screening model (COSMO) as a part of the continuum model in three solvents: water, ethanol, and tert-butyl alcohol. To investigate the micro-process wherein the solvent molecules react with the solute molecules directly, the discrete model was employed to simulate the impact of a single molecule of water, ethanol and tert-butyl alcohol on the reaction. Consistent results were obtained for the two different solvent models. Reaction activity was most favorable for the tert-butyl alcohol followed by ethanol. Protic solvent molecules promote the heterolytic cleavage of hydrogen peroxide and form active oxygen species, which can reduce the reaction barrier.

  • 加载中
    1. [1]

      (1) Jinka, K. M.; Bajaj, H. C.; Jasra, R. V.; Prasetyanto, E. A.; Park, S. E. Top Catal. 2010, 53, 238.

    2. [2]

      (2) Xu, J. Q.; Chu,W.; Chen, M. H. Chinese Industry and Engineering Progress 2005, 24, 981.

    3. [3]

      [许俊强, 储伟, 陈慕华. 化工进展, 2005, 24, 981.]

    4. [4]

      (3) Xu, J. Q.; Chu,W.; Luo, S. Z. J. Mol. Catal. A: Chem. 2006, 256, 48.

    5. [5]

      (4) Jiang, Y.; Chu,W.; Jiang, C. F.;Wang, Y. H. Acta Phys. -Chim. Sin. 2007, 23, 1723.

    6. [6]

      [姜勇, 储伟, 江成发, 王耀红. 物理 化学学报, 2007, 23, 1723.]

    7. [7]

      (5) Zhang, X.; Chu,W.; Chen, J. J.; Dai, X. Y. Acta Phys. -Chim. Sin. 2009, 25, 451.

    8. [8]

      [张旭, 储伟, 陈建钧, 戴晓雁. 物理化 学学报, 2009, 25, 451.]

    9. [9]

      (6) Sun,W. J.; Chu,W.; Yu, L. J.; Jiang, C. F. Chin. J. Chem. Phys. 2010, 23, 175.

    10. [10]

      (7) Lane, B. S.; Burgess, K. Chem. Rev. 2003, 103, 2457.

    11. [11]

      (8) Chen, Y. Y.; Han, X.W. Prog. Chem. 2006, 18, 399.

    12. [12]

      [陈杨英, 韩秀文. 化学进展, 2006, 18, 399.]

    13. [13]

      (9) Wang, X. L.;Wu, G. D.;Wei,W.; Sun, Y. H. Catal. Lett. 2010, 136, 96.

    14. [14]

      (10) Choudhary, V. R.; Patil, N. S.; Chaudhari, N. K.; Bhargava, S. K. J. Mol. Catal. A: Chem. 2005, 227, 217.

    15. [15]

      (11) Jinka, K. M.; Pai, S. M.; Newalkar, B. L.; Choudary, N. V.; Jasra, R. V. Catal. Commun. 2010, 11, 638.

    16. [16]

      (12) Ren, T.; Yan, L.; Zhang, H. P.; Suo, J. S. J. Mol. Catal. (China.) 2003, 17, 310.

    17. [17]

      [任通, 阎亮, 张汉鹏, 索继栓. 分子催化, 2003, 17, 310.]

    18. [18]

      (13) Patil, N. S.; Uphade, B. S.; McCulloh, D. G.; Bhargava, S. K.; Choudhary, V. R. Catal. Commun. 2004, 5, 681.

    19. [19]

      (14) Patil, N. S.; Uphade, B. S.; Jana, P.; Uphade, B. S.; Choudhary, V. R. J. Catal. 2004, 223, 236.

    20. [20]

      (15) Choudhary, V. R.; Patil, N. S.; Chaudhari, N. K.; Bhargava, S. K. Catal. Commun. 2004, 5, 205.

    21. [21]

      (16) Patil, N. S.; Jha, R.; Uphade, B. S.; Bhargava, S. K.; Choudhary, V. R. Appl. Catal. A: Gen. 2004, 275, 87.

    22. [22]

      (17) Liu, J. H.;Wang, F.; Xu, T.; Gu, Z. G. Catal. Lett. 2010, 134, 51.

    23. [23]

      (18) Liu, X.W.;Wang, X. S.; Guo, X.W.; Li, G. Catal. Today 2004, 93-95, 505.

    24. [24]

      (19) Liu, J. H.;Wang, F.; Liu, Y. X.; Xu, X. L. Chin. J. Catal. 2007, 28, 1003.

    25. [25]

      [刘俊华, 王芳, 刘艳侠, 徐贤伦. 催化学报, 2007, 28, 1003.]

    26. [26]

      (20) Xiong, Y.; Zhang, Y.; Liu, Y.; Du, Z. X. Chinese Industry and Engineering Progress, 2006, 25, 675.

    27. [27]

      [熊勇, 张宇, 刘易, 杜泽学. 化工进展, 2006, 25, 675.]

    28. [28]

      (21) Wu, Y. L.; Liu, Q. S.; Su, X. L.; Mi, Z. T. Journal of Tsinghua University (Science & Technology), 2007, 47(9), 1511.

    29. [29]

      [吴玉 龙, 刘青山, 苏雪丽, 米镇涛. 清华大学学报(自然科学版), 2007, 47(9), 1511.]

    30. [30]

      (22) Tomasi, J.; Mennucci, B.; Cammi, R. Chem. Rev. 2002, 105, 2999.

    31. [31]

      (23) Kongsted, J.; Mennucci, B.; Coutinho, K.; Canuto, S. Chem. Phys. Lett. 2010, 484, 185.

    32. [32]

      (24) Perdew, J. P.;Wang, Y. Phys. Rev. B 1992, 45, 13244.

    33. [33]

      (25) Henkelman, G.; Jonsson, H. J. Chem. Phys. 2000, 113, 9978.

    34. [34]

      (26) Klamt, A.; Schuurmann, G. J. Chem. Soc. Perkin Trans. 2, 1993, No.5, 799.

    35. [35]

      (27) Cao, Z. Q. Studies and Applications of a Combined Discretecontinuum Solvation Model. Ph.D. Dissertation, Xiamen University, Xiamen, 2004.

    36. [36]

      [曹志霁. 离散-连续组合溶剂化 模型的应用研究

    37. [37]

      [D]. 厦门: 厦门大学, 2004.]

    38. [38]

      (28) Li, Y. Preparation, Characterization and Catalytic Performance of Supported Heteropoly Compounds Catalysts for Rin pening Polymerization of Tetrahydrofuran. Ph.D. Dissertation, Sichuan University, Chengdu, 2008.

    39. [39]

      [李洋. 四氢呋喃开环 聚合用担载型杂多化合物催化剂的研制、表征与性能研究

    40. [40]

      [D]. 成都: 四川大学, 2008.]

    41. [41]

      (29) Reichardt, C. Solvent Effect in Organic Chemistry; Chemical Industry Press: Beijing, 1987; pp 278-319; translated by Tang, K., Xie, Z., Chen, Z. J., Lin, J.W.

    42. [42]

      [Reichardt, C. 有机化学中的 溶剂效应. 唐培堃, 谢周, 陈之基, 林吉文, 译. 北京: 化学工 业出版社, 1987: 278-319.]


  • 加载中
    1. [1]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    2. [2]

      Liu LinZemin SunHuatian ChenLian ZhaoMingyue SunYitao YangZhensheng LiaoXinyu WuXinxin LiCheng Tang . Recent Advances in Electrocatalytic Two-Electron Water Oxidation for Green H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(4): 2305019-0. doi: 10.3866/PKU.WHXB202305019

    3. [3]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    4. [4]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    5. [5]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    6. [6]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    7. [7]

      Mahmoud SayedHan LiChuanbiao Bie . Challenges and prospects of photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(9): 100117-0. doi: 10.1016/j.actphy.2025.100117

    8. [8]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    9. [9]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

    10. [10]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    11. [11]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    12. [12]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

    13. [13]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    14. [14]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    15. [15]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    16. [16]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    17. [17]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    18. [18]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    19. [19]

      Zhuoyan LvYangming DingLeilei KangLin LiXiao Yan LiuAiqin WangTao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 2408015-0. doi: 10.3866/PKU.WHXB202408015

    20. [20]

      Zeyi Yan Ruitao Liu Xinyu Qi Yuxiang Zhang Lulu Sun Xiangyuan Li Anchao Feng . Exploration of Suspension Polymerization: Preparation and Fluorescence Stability of Perovskite Polystyrene Microbeads. University Chemistry, 2025, 40(4): 72-79. doi: 10.12461/PKU.DXHX202405110

Metrics
  • PDF Downloads(2219)
  • Abstract views(4462)
  • HTML views(90)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return