Citation:
HAN Rong-Cheng, YU Min, SHA Yin-Lin. Interaction between CdSeS Quantum Dots and ld Nanoparticles in Solution[J]. Acta Physico-Chimica Sinica,
;2011, 27(01): 255-261.
doi:
10.3866/PKU.WHXB20110135
-
We studied the interaction between CdSeS quantum dots (QDs) and ld nanoparticles (AuNPs) in solution. We found that the photoluminescence (PL) intensity of the QDs was efficiently quenched by the AuNPs with extraordinarily high Stern-Volmer quenching constant (Ksv) values that approach 108 L·mol-1. The quenching efficiency is strongly related to the spectral overlap and the distance between the QDs and AuNPs and is independent of solvent polaritym, ion strength, and pH value. These results suggest that this superquenching behavior can be attributed to a long-range (Förster-type) energy transfer. Our findings allow for the design of exquisite multiple örster resonance energy transfer (FRET)-based biosensors for the highly sensitive and simultaneous monitoring of multiple molecules in live cells.
-
Keywords:
-
Quantum dots
, - ld nanoparticles,
- Quenching,
- Energy transfer
-
-
-
-
[1]
1. Alivisatos, A. P. J. Phys. Chem., 1996, 100:13226
-
[2]
2. Bruchez, M.; Moronne, M.; Gin, P.;Weiss, S.; Alivisatos, A. P.Science, 1998, 281: 2013
-
[3]
3. Chan,W. C.W.; Nie, S. M. Science, 1998, 281: 2016
-
[4]
4. Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose,S.; Li, J. J.; Sundaresan, G.;Wu, A. M.; Gambhir, S. S.;Weiss, S.Science, 2005, 307: 538
-
[5]
5. Liu, X. O.; Atwater, M.;Wang, J. H.; Huo, Q. Colloids Surf. B,2007, 58: 3
-
[6]
6. Dulkeith, E.; Morteani, A. C.; Niedereichholz, T.; Klar, T. A.;Feldmann, J.; Levi, S. A.; van Veggel, F. C. J. M.; Reinhoudt, D.N.; Moller, M.; Gittins, D. I. Phys. Rev. Lett., 2002, 89: 203002
-
[7]
7. Dubertret, B.; Calame, M.; Libchaber, A. J. Nat. Biotechnol.,2001, 19: 680
-
[8]
8. Du, H.; Disney, M. D.; Miller, B. L.; Krauss, T. D. J. Am. Chem.Soc., 2003, 125: 4012
-
[9]
9. Nikoobakht, B.; Burda, C.; Braun, M.; Hun, M.; EI-Sayed, M. A.Photochem. Photobiol., 2002, 75: 591
-
[10]
10. Gueroui, Z.; Libchaber, A. Phys. Rev. Lett., 2004, 93:166108
-
[11]
11. Kulakovich, O.; Strekal, N.; Yaroshevich, A.; Maskevich, S.;Gaponenko, S.; Nabiev, I.;Wog n, U.; Artemyev, M. Nano Lett.,2002, 2: 1449
-
[12]
12. Shimizu, K. T.;Woo,W. K.; Fisher, B. R.; Eisler, H. J.; Bawendi,M. G. Phys. Rev. Lett., 2002, 89:117401
-
[13]
13. Dyadyusha, L.; Yin, H.; Jaiswal, S.; Brown, T.; Baumberg, J. J.;Booy, F. P.; Melvin, T. Chem. Commun., 2005: 3201
-
[14]
14. Oh, E.; Hong, M. Y.; Lee, D.; Nam, S. H.; Yoon, H. C.; Kim, H. S.J. Am. Chem. Soc., 2005, 127: 3270
-
[15]
15. Bailey, R. E.; Nie, S. M. J. Am. Chem. Soc., 2003, 125: 7100
-
[16]
16. Jang, E.; Jun, S.; Pu, L. Chem. Commun., 2003: 2964
-
[17]
17. Pellegrino, T.; Manna, L.; Kudera, S.; Liedl, T.; Koktysh, D.;Rogach, A. L.; Keller, S.; Radler, J.; Natile, G.; Parak,W. J. NanoLett., 2004, 4: 703
-
[18]
18. Brust, M.;Walker, M.; Bethell, D.; Schiffrin, D.; Whyman, R.J. Chem. Soc., Chem. Commun., 1994, 7: 801
-
[19]
19. Solt, JW; Geuze, H J. Eur. J. Cell Biol., 1985, 38: 87
-
[20]
20. Birks, J. B.; Georghio, S. J. Phys. B- At. Mol. Opt. Phys., 1968, 1:958
-
[21]
21. Eisenthal, K. B.; Siegel, S., J. Chem. Phys., 1964, 41, 652
-
[22]
22. Bennett, R. G. J. Chem. Phys., 1964, 41: 3037
-
[23]
23. Lakowicz, J. R. Principles of fluorescence spectroscopy. 3rd ed.Springer: 2006, 954-960
-
[24]
24. Medintz, I. L.; Clapp, A. R.; Mattoussi, H.; ldman, E. R.;Fisher, B.; Mauro, J. M. Nature Materials, 2003, 2: 630
-
[25]
25. Chen, L. H.; McBranch, D.W.;Wang, H. L.; Helgeson, R.;Wudl,F.; Whitten, D. G. Proc. Nat. Acad. Sci. U. S. A., 1999, 96: 12287
-
[26]
26. Jiang, H.; Zhao, X. Y.; Schanze, K. S. Langmuir, 2006, 22: 5541
-
[27]
27. Harrison, B. S.; Ramey, M. B.; Reynolds, J. R.; Schanze, K. S.J. Am. Chem. Soc., 2000, 122: 8561
-
[28]
28. Guan, H. L.; Zhou, P.; Zhou, X. L.; He, Z. K. Talanta., 2008, 77:319
-
[29]
29. Fan, C. H.;Wang, S.; Hong, J.W.; Bazan, G. C.; Plaxco, K.W.;Heeger, A. J. Proc. Nat. Acad. Sci. U. S. A., 2003, 100: 6297
-
[30]
30. Swager, T. M. Acc. Chem. Res., 1998, 31: 201
-
[31]
31. Demers, L. M.; Ostblom, M.; Zhang, H.; Jang, N. H.; Liedberg,B.; Mirkin, C. A. J. Am. Chem. Soc., 2002, 124: 11248.
-
[32]
32. Storhofff, J. J.; Elghanian, R.; Mirkin, C. A.; Letsinger, R. L.Langmuir, 2002, 18: 6666
-
[33]
33. Resch-Genger, U.; Grabolle, M.; Cavaliere-Jaricot, S.; Nitschke,R.; Nann, T. Nat. Methods, 2008, 5: 763
-
[34]
34. Wang, F. B.; Peng, Y.; Fan, M. Y.; Liu, Y. N.; Huang, K. L. ActaPhys. -Chim. Sin., 2009, 25: 1125
-
[35]
[王芳斌, 彭勇, 范美意, 刘又年, 黄可龙. 物理化学学报, 2009, 25: 1125]
-
[36]
35. Ray, P. C.; Darbha, G. K.; Ray, A.;Walker, J.; Hardy,W.Plasmonics, 2007, 2: 173
-
[37]
36. Greenham, N. C.; Peng, X. G.; Alivisatos, A. P. Phys. Rev. BCondens.Matter, 1996, 54: 17628
-
[1]
-
-
-
[1]
Miaomiao He , Zhiqing Ge , Qiang Zhou , Jiaqing He , Hong Gong , Lingling Li , Pingping Zhu , Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040
-
[2]
Yu SU , Xinlian FAN , Yao YIN , Lin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126
-
[3]
Zeyu XU , Anlei DANG , Bihua DENG , Xiaoxin ZUO , Yu LU , Ping YANG , Wenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099
-
[4]
Qi Wu , Changhua Wang , Yingying Li , Xintong Zhang . Enhanced photocatalytic synthesis of H2O2 by triplet electron transfer at g-C3N4@BN van der Waals heterojunction interface. Acta Physico-Chimica Sinica, 2025, 41(9): 100107-0. doi: 10.1016/j.actphy.2025.100107
-
[5]
Jianjun Liu , Xue Yang , Chi Zhang , Xueyu Zhao , Zhiwei Zhang , Yongmei Chen , Qinghong Xu , Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031
-
[6]
Lingqi Zhang , Hairong Huang , Jialin Li , Li Ji , Yufan Pan , Meiling Ye , Cuixue Chen , Shunü Peng . 桂花碳量子点的绿色制备及科普应用方案. University Chemistry, 2025, 40(8): 298-306. doi: 10.12461/PKU.DXHX202409138
-
[7]
Li'na ZHONG , Jingling CHEN , Qinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280
-
[8]
Wenlong Wang , Wentao Hao , Lang He , Jia Qiao , Ning Li , Chaoqiu Chen , Yong Qin . Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation. Acta Physico-Chimica Sinica, 2025, 41(9): 100116-0. doi: 10.1016/j.actphy.2025.100116
-
[9]
Tong WANG , Qinyue ZHONG , Qiong HUANG , Weimin GUO , Xinmei LIU . Mn-doped carbon quantum dots/Fe-doped ZnO flower-like microspheres heterojunction: Construction and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1589-1600. doi: 10.11862/CJIC.20250011
-
[10]
Yongjie ZHANG , Bintong HUANG , Yueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247
-
[11]
Zhuo WANG , Xiaotong LI , Zhipeng HU , Junqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223
-
[12]
Hong LI , Xiaoying DING , Cihang LIU , Jinghan ZHANG , Yanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370
-
[13]
Ruiqin Feng , Ye Fan , Yun Fang , Yongmei Xia . Strategy for Regulating Surface Protrusion of Gold Nanoflowers and Their Surface-Enhanced Raman Scattering. Acta Physico-Chimica Sinica, 2024, 40(4): 2304020-0. doi: 10.3866/PKU.WHXB202304020
-
[14]
Hongpeng He , Mengmeng Zhang , Mengjiao Hao , Wei Du , Haibing Xia . Synthesis of Different Aspect-Ratios of Fixed Width Gold Nanorods. Acta Physico-Chimica Sinica, 2024, 40(5): 2304043-0. doi: 10.3866/PKU.WHXB202304043
-
[15]
Yu Dai , Xueting Sun , Haoyu Wu , Naizhu Li , Guoe Cheng , Xiaojin Zhang , Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052
-
[16]
Yingpeng ZHANG , Xingxing LI , Yunshang YANG , Zhidong TENG . A pyrazole-based turn-off fluorescent probe for visual detection of hydrazine. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1301-1308. doi: 10.11862/CJIC.20250064
-
[17]
Bizhu Shao , Huijun Dong , Yunnan Gong , Jianhua Mei , Fengshi Cai , Jinbiao Liu , Dichang Zhong , Tongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026
-
[18]
Chenye An , Sikandaier Abiduweili , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019
-
[19]
Lina Liu , Xiaolan Wei , Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112
-
[20]
Wenli FENG , Lu ZHAO , Yunfeng BAI , Feng FENG . Research progress on ultralong room temperature phosphorescent carbon dots. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 833-846. doi: 10.11862/CJIC.20240308
-
[1]
Metrics
- PDF Downloads(1501)
- Abstract views(3004)
- HTML views(44)