Citation: CUI Wen-Yu, AN Mao-Zhong, YANG Pei-Xia, ZHANG Jin-Qiu. Cathodic and Thermal Stabilities of the P(VdF-HFP)-Based Ionic Liquid Composite Polymer Electrolyte[J]. Acta Physico-Chimica Sinica, ;2011, 27(01): 78-84. doi: 10.3866/PKU.WHXB20110112 shu

Cathodic and Thermal Stabilities of the P(VdF-HFP)-Based Ionic Liquid Composite Polymer Electrolyte

  • Received Date: 20 September 2010
    Available Online: 25 November 2010

    Fund Project: 黑龙江省自然科学基金(B2007-05)资助项目 (B2007-05)

  • We report on a composite polymer electrolyte containing the ionic liquid 1-ethyl-3- methylimidazolium hexafluorophosphate (EMIPF6). This composite polymer electrolyte is based on the poly(vinylidene fluoride-co-hexafluoropropylene) (P(VdF-HFP)) polymer matrix and is a potential electrolyte for use in lithium ion batteries. The ionic conductivity of the composite polymer electrolyte was measured by electrochemical impedance spectroscopy (EIS). Linear sweep voltammetry (LSV) was performed to investigate the electrochemical stability window of the polymer electrolyte. The thermal properties for the composite polymer electrolyte were also characterized by thermogravimetry (TG) and by a flammability test. The results show that the presence of the EMIPF6 ionic liquid increases the ion transport properties greatly but a better cathodic stability is only obtained by the addition of organic additives such as ethylene carbonate-propylene carbonate (EC-PC), which extends the cathodic stability to 0.3 V. This corresponds to an electrochemical stability window of 0.3-4.3 V. The selected Li4Ti5O12 anode and LiCoO2 cathode materials exhibit acceptable electrochemical performance in combination with the prepared P(VdF-HFP)/ LiPF6/EMIPF6/EC-PC composite polymer electrolyte. At a charge-discharge rate of 0.1C, Li/LiCoO2 and Li/ Li4Ti5O12 have reversible capacities of 130 and 144 mAh·g-1, respectively. However, the corresponding thermal performance is suppressed because of the presence of organic additives.

  • 加载中
    1. [1]

      1. Sung, M. G.; Hattori, K.; Asai, S. Materials and Design, 2009, 30: 387

    2. [2]

      2. Song, J. Y.;Wang, Y. Y.;Wan, C. C. J. Power Sources, 1999, 7: 183

    3. [3]

      3. Alper, J. Science, 2002, 296: 1224

    4. [4]

      4. Scrosati, B.; Croce, F.; Persi, L. J. Electrochem. Soc., 2000, 147: 1. 718

    5. [5]

      5. Croce, F.; Appetecchi, G. B.; Persi, L.; Scrosati, B. Nature, 1998: 456

    6. [6]

      6. Croce, F.; Curini, R.; Martinelli, A.; Persi, L.; Ronci, F.; Scrosati, B.; Caminiti, R. J. Phys. Chem. B, 1999, 103: 10632

    7. [7]

      7. Wieczoreck,W.; Lipka, P.; Zukowska, G.;Wycislik, H. J. Phys. Chem., 1998, 102: 6968

    8. [8]

      8. Saito, Y.; Stephan, M.; Kataoka, H. Solid State Ionics, 2003, 16: 149

    9. [9]

      9. Forsyth, M.; Meakin, P. M.; MacFarlane, D. R. Electrochim. Acta, 1995, 40: 2339

    10. [10]

      10. Adebahr, J.; Forsyth, M.; MacFarlane, D. R.; Gavelin, P.; Jacobsson, P. Solid State Ionics, 2002, 14: 303

    11. [11]

      11. Noda, A.; Hayamizu, K.;Watanabe, M. J. Phys. Chem. B, 2001, 105: 4603

    12. [12]

      12. Tokuda, H.; Hayamizu, K.; Ishii, K.; Susan, M. A. B. H.; Watanabe, M. J. Phys. Chem. B, 2004, 108: 16593

    13. [13]

      13. Shin, J. H.; Henderson,W. A.; Passerini, S. Electrochem. Commun., 2003, 5: 1016

    14. [14]

      14. Shin, J. H.; Henderson,W. A.; Appetecchi, G. B.; Alessandrini, F.; Passerini, S. Electrochim. Acta, 2005, 5: 3859

    15. [15]

      15. Cheng, H.; Zhu, C.; Huang, B.; Lu, M.; Yang, Y. Electrochim. Acta, 2007, 52: 5789

    16. [16]

      16. Fortunato, R.; Branco, L. C. C.; Afonso, A. M.; Benavente, J.; Crespo, J. G. J. Membrane Science, 2006, 270: 42

    17. [17]

      17. Fuller, J.; Breda, A. C.; Carlin, R. T. J. Electrochem. Soc., 1997, 144: L67

    18. [18]

      18. Fuller, J.; Breda, A. C.; Carlin, R. T. J. Electroanal. Chem., 1998,459: 29

    19. [19]

      19. Nishida, T.; Tashiro, Y.; Yamamoto, M. J. Fluorine Chem., 2003, 120: 135

    20. [20]

      20. Hagiwara, R.; Hirashige, T.; Tsuda, T.; Ito, Y. J. Fluorine Chem., 1999, 99: 1

    21. [21]

      21. Matsumoto, H.; Miyazakj, Y. Chem. Lett., 2000: 922

    22. [22]

      22. Bonhôte, P.; Dias, A. P.; Papageorgiou, N.; Kalyanasundaram, K.; Grätzel, M. Inorg. Chem., 1996, 35: 1168

    23. [23]

      23. Ye, H.; Huang, J.; Xu, J. J.; Khalfan, A.; Greenbaum, S. G. J. Electrochem. Soc., 2007, 154: A1048

    24. [24]

      24. Evans, J.; Vincent, C. A.; Bruce, P. G. Polymer, 1987, 28: 2324

    25. [25]

      25. Zhang, S. M.; Hou, Y.W.; Huang,W. G.; Shan, Y. K. Electrochim. Acta, 2005, 50: 4097

    26. [26]

      26. Kim, K. S.; Park, S. Y.; Choi, S.; Lee, H. J. Power Sources, 2006, 155: 385

    27. [27]

      27. Tokuda, H.; Hayamizu, K.; Ishii, K.; Susan, M. A. B. H.; Watanabe, M. J. Phys. Chem. B, 2005, 109: 6103

    28. [28]

      28. Botte, G. G.; White, R. E.; Zhang, Z. M. J. Power Sources, 2001, 97-98: 570

    29. [29]

      29. Wang, Q. S.; Sun, J. H.; Yao, X. L.; Chen, C. H. Journal of Loss Prevention in the Process Industries, 2006, 19: 561

    30. [30]

      30. Saikia, D.; Kumar, A. Electrochim. Acta, 2004, 49: 2581


  • 加载中
    1. [1]

      Yameen AhmedXiangxiang FengYuanji GaoYang DingCaoyu LongMustafa HaiderHengyue LiZhuan LiShicheng HuangMakhsud I. SaidaminovJunliang Yang . Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(6): 2303057-0. doi: 10.3866/PKU.WHXB202303057

    2. [2]

      Aoyu HuangJun XuYu HuangGui ChuMao WangLili WangYongqi SunZhen JiangXiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2408007-0. doi: 10.3866/PKU.WHXB202408007

    3. [3]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

    4. [4]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    5. [5]

      Xintong ZhuBin CaoChong YanCheng TangAibing ChenQiang Zhang . Advances in coating strategies for graphite anodes in lithium-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100096-0. doi: 10.1016/j.actphy.2025.100096

    6. [6]

      Jingshuo ZhangYue ZhaiZiyun ZhaoJiaxing HeWei WeiJing XiaoShichao WuQuan-Hong Yang . Research Progress of Functional Binders in Silicon-Based Anodes for Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306006-0. doi: 10.3866/PKU.WHXB202306006

    7. [7]

      Siyu ZhangKunhong GuBing'an LuJunwei HanJiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-0. doi: 10.3866/PKU.WHXB202309028

    8. [8]

      Qi LiPingan LiZetong LiuJiahui ZhangHao ZhangWeilai YuXianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030

    9. [9]

      Ying LiYushen ZhaoKai ChenXu LiuTingfeng YiLi-Feng Chen . Rational Design of Cross-Linked N-Doped C-Sn Nanofibers as Free-Standing Electrodes towards High-Performance Li-Ion Battery Anodes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305007-0. doi: 10.3866/PKU.WHXB202305007

    10. [10]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    11. [11]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    12. [12]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    13. [13]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    14. [14]

      Yingtong ShiGuotong XuGuizeng LiangDi LanSiyuan ZhangYanru WangDaohao LiGuanglei Wu . PEG-VN改性PP隔膜用于高稳定性高效率锂硫电池. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-0. doi: 10.1016/j.actphy.2025.100082

    15. [15]

      Yawen GuoDawei LiYang GaoCuihong Li . Recent Progress on Stability of Organic Solar Cells Based on Non-Fullerene Acceptors. Acta Physico-Chimica Sinica, 2024, 40(6): 2306050-0. doi: 10.3866/PKU.WHXB202306050

    16. [16]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    17. [17]

      Mingxuan QiLanyu JinHonghe YaoZipeng XuTeng ChengQi ChenCheng ZhuYang Bai . Recent progress on electrical failure and stability of perovskite solar cells under reverse bias. Acta Physico-Chimica Sinica, 2025, 41(8): 100088-0. doi: 10.1016/j.actphy.2025.100088

    18. [18]

      Zeyi Yan Ruitao Liu Xinyu Qi Yuxiang Zhang Lulu Sun Xiangyuan Li Anchao Feng . Exploration of Suspension Polymerization: Preparation and Fluorescence Stability of Perovskite Polystyrene Microbeads. University Chemistry, 2025, 40(4): 72-79. doi: 10.12461/PKU.DXHX202405110

    19. [19]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    20. [20]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

Metrics
  • PDF Downloads(1707)
  • Abstract views(3049)
  • HTML views(91)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return