Citation: WU Da-Wang, LI Shuo, CHEN Yao-Qiang, NG Mao-Chu, ZHANG Qiu-Lin, LIU Kang-Lian, WANG Yu-Lin. Photocatalytic Degradation of Gas Phase Benzene over WO3/Bi12SiO20[J]. Acta Physico-Chimica Sinica, ;2010, 26(12): 3299-3304. doi: 10.3866/PKU.WHXB20101139 shu

Photocatalytic Degradation of Gas Phase Benzene over WO3/Bi12SiO20

  • Received Date: 13 June 2010
    Available Online: 20 October 2010

    Fund Project: 贵州省教育厅自然科学基金(2005221)资助项目 (2005221)

  • WO3 and Bi12SiO20 powders were prepared by a gas-liquid reaction and chemical solution decomposition, respectively. WO3/Bi12SiO20 photocatalysts were coupled by mixing WO3 and Bi12SiO20. The reduction of benzene was used to investigate the activity of WO3/Bi12SiO20. The results indicate that the activity of the coupled WO3/Bi12SiO20 catalysts increased substantially. The degradation behavior of benzene over 30%(w) WO3/Bi12SiO20 under UV irradiation was obviously better than that of P-25, and the degradation of benzene under visible light was also considerable. The photocatalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS). The results showed that there was a od synergistic effect between WO3 and Bi12SiO20. The photogenerated electrons and holes were effectively separated after coupling between WO3 and Bi12SiO20 and the rate of electron and hole production increased. The electrons and holes were effectively separated and the photocatalytic activity increased accordingly.

  • 加载中
    1. [1]

      1. Fujishima,A.; Honda, K. Nature, 1972, 37(1): 238

    2. [2]

      2. Olis, D. F.; Pelizzetti, E.; Serpone, N. Environ. Soc. Technol., 1991, 25(9): 15229

    3. [3]

      3. Shi, J. E.; Yan, J. C.; Shang, S. X.; Chen, D.W.; Wang, Y. H.; Yan, F C.; Xue, J.; Chu, L. W.; Su, L. M. Chem. J. Chin. Univ., 2007, 28(7): 1325

    4. [4]

      [石金娥, 闫吉昌, 尚淑霞,陈大伟, 王悦宏, 闫福成,薛静, 初丽伟,苏丽敏. 高等学校化学学报, 2007, 28(7): 1325]

    5. [5]

      4. Choi, W.; Termin, A.; Hoffmann, M. R. J. Phys. Chem., 1991, 95 (13): 5261

    6. [6]

      5. Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, T.; Taga, Y. Science, 2001, 293(5528): 269

    7. [7]

      6. Joshi, M. M.; Labhsetwar, N. K.; Mangrulkar, P. A.; Tijare, S. N.; Kamble, S. P.;Rayalu, S. S. Appl. Catal. A-Gen., 2009, 357: 26

    8. [8]

      7. pidas, K. R.; Bohorquez, M.; Kamat, P .V. Phys. Chem., 1990, 94 (24): 6435

    9. [9]

      8. Tang, J. W.; Ye, J. H. Chem. Phys. Lett., 2005, 410: 104

    10. [10]

      9. He, C. H.; Gu, M. Y. Scripta Mater., 2006, 55: 481

    11. [11]

      10. He, C. H.; Gu, M. Y. Scripta Mater., 2006, 54: 1221

    12. [12]

      11. Meng, Q. H.; Yu, X. Imaging Science and Photochemistry, 2009, 27(1): 48

    13. [13]

      [孟庆华, 于昕, 朱亦仁. 影像科学与光化学, 2009, 27 (1): 48]

    14. [14]

      12. Wagner, C. D.; Riggs, W. M.; Davis, L. E.; Moulder, J. F.; Mullenberg, G. E. Eden Prairie- Perking-Elmer Corp, 1979

    15. [15]

      13. Jiang, D.; Xu, Y.; Hou, B.;Wu, D.; Yang, Y. H. Acta Phys. -Chim. Sin., 2008, 23(5): 1080

    16. [16]

      [姜东,徐耀,侯博,吴东,孙予罕. 物理化学学报, 2008, 23(5): 1080]

    17. [17]

      14. Khan, S. U. M.; Mofareh, A. S.;William, B. J. Inger. Science, 2002, 297:2243

    18. [18]

      15. Lettmann, C.; Hildenbrand, K.; Kisch, H.; Macyk, W.; Maier, W. F. Appl. Catal. B, 2001, 32: 215

    19. [19]

      16. Wei, F. Y,; Sang, L. Chin. J. Catal., 2009, 30(4): 335

    20. [20]

      [魏凤玉, 桑蕾.催化学报, 2009, 30(4): 335]

    21. [21]

      17. Papp, J.; Soled, S.; Dwight, K. J. Chem. Mater., 1994, 6: 496

    22. [22]

      18. Butler, M.A.; Ginley, D. S. J. Electrochem. Soc., 1978, (125): 228

    23. [23]

      19. Tang, J.; Ye, J. Chem. Phys. Lett., 2005, 410: 104

    24. [24]

      20. Huang, T.; Lin, X. P.; Xing, J. C.; Wang, W. D.; Shan, Z. C.; Huang, F. Q. Mater. Sci. Eng. B. 2007, 141(1-2): 49

    25. [25]

      21. Yuan, Z. H.; Wang, Y. H.; Sun, Y. C.; Wang, J.; Bie, L. J.; Duan, Y. Q. Sci. in China Ser. B-Chem, 2005, 35(6): 471

    26. [26]

      [袁志好, 王玉红, 孙永 昌,王晶,别利剑,段月琴.中国科学B辑: 化学. 2005, 35(6): 471]


  • 加载中
    1. [1]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    2. [2]

      Xia ZHANGYushi BAIXi CHANGHan ZHANGHaoyu ZHANGLiman PENGShushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255

    3. [3]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    4. [4]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    5. [5]

      Yadan Luo Hao Zheng Xin Li Fengmin Li Hua Tang Xilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-. doi: 10.1016/j.actphy.2025.100052

    6. [6]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    7. [7]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    8. [8]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    9. [9]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    10. [10]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    11. [11]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    12. [12]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    13. [13]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    14. [14]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    15. [15]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    16. [16]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    17. [17]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    18. [18]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    19. [19]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    20. [20]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

Metrics
  • PDF Downloads(1530)
  • Abstract views(2885)
  • HTML views(16)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return