Citation: ZONG Hua, WANG Lei, FANG Hong-Bo, MAO Lei-Ting, WANG Yu-Hui, ZHANG Lu, ZHAO Sui, YU Jia-Yong. Effect of Hydrophobically Modified Polyacrylamide on Interfacial Dilational Rheological Properties of Crude Oil Components[J]. Acta Physico-Chimica Sinica, ;2010, 26(11): 2982-2988. doi: 10.3866/PKU.WHXB20101105 shu

Effect of Hydrophobically Modified Polyacrylamide on Interfacial Dilational Rheological Properties of Crude Oil Components

  • Received Date: 27 June 2010
    Available Online: 10 September 2010

    Fund Project: 国家科技重大专项(2008ZX05011) (2008ZX05011)国家高技术研究发展计划项目(863) (2008AA092801)资助 (863) (2008AA092801)

  • The effect of hydrophobically modified polyacrylamide (HMPAM) on the dilational rheological properties of interfacial films containing acidic components or asphaltenes in petroleum crude oil was investigated by drop shape analysis method. The influence of surface-active component concentration on the dilational rheological behavior was investigated. Experimental results show that the dilational modulus is approximately 100 mN·m-1 for a 1750 mg·L-1 HMPAMsolution. This is due to the formation of an interfacial structure by a hydrophobic interaction among HMPAM molecules. As the interfacial film ages, the acidic component molecules adsorb onto the interface and form mixed complexes with the hydrophobic parts of the HMPAMmolecules. These interactions reduce the dilational modulus by a fast exchange process and the elasticity of the structure improves because of an enhanced hydrophobic interaction among the HMPAMmolecules. For asphaltenes, the nature of the interfacial film is controlled by both the structure of HMPAMand the interfacial complex formed by pure asphaltene molecules because of their relatively larger molecular sizes as well as their strong intermolecular interactions, which leads to a slight decrease in the dilational modulus compared with the pure HMPAMsystem.

     

  • 加载中
    1. [1]

      1. Taylor, K. C.; Nasr-El-Din, H. A. J. Petrol. Sci. Eng., 1998, 19: 265

    2. [2]

      2. Taylor, K. C.; Nasr-El-Din, H. A. Colloids Surf. A, 1998, 108: 49

    3. [3]

      3. Shen, P. P.; Yu, J. Y. Fundamental study on extensively enhanced petroleumrecovery. Beijing: PetroleumIndustry Press, 2001: a38- 92; b133-159; c160-193 [沈平平, 俞稼镛.大幅度提高石油采收率的基础研究. 北京: 石油工业出版社, 2001: a38-92; b133-159; c160-193]

    4. [4]

      4. Li, M. Y.; Wu, Z. L. Petroleumemulsion. Beijing: Science Press, 2009: 40-68 [李明远,吴肇亮.石油乳状液.北京: 科学出版社, 2009: 40-68]

    5. [5]

      5. Liggieri, L.; Ferrari,M.;Mondelli, D.; Ravera, F. Faraday Discuss., 2005, 129: 125

    6. [6]

      6. Zhu, Y. Y.; Xu, G. Y. Acta Phys. -Chim. Sin., 2009, 25: 191 [朱艳艳, 徐桂英.物理化学学报, 2009, 25: 191]

    7. [7]

      7. Wang, Y. Y.; Zhang, L.; Sun, T. L. Zhao, S.; Yu, J. Y. Chem. J. Chin. Univ., 2003, 24: 2044 [王宜阳, 张路,孙涛垒,赵濉, 俞稼镛. 高等学校化学学报2003, 24: 2044]

    8. [8]

      8. Hannisdal, A.; Orr, R.; Sjöblom, J. J. Dispersion Sci. Technol., 2007, 28: 361

    9. [9]

      9. Dicharry, C.; Arla, D.; Sinquin, A.; Graciaa, A.; Bouriat, P. J. Colloid Interface Sci., 2006, 297: 785

    10. [10]

      10. Aske, N.; Orr, R.; Sjöblom, J. J. Dispersion Sci. Technol., 2002, 23: 809

    11. [11]

      11. Freer, E. M.; Radke, C. J. J. Adhes., 2004, 80: 481

    12. [12]

      12. Bouriat, P.; ElKerri, N.; Graciaa, A.; Lachaise, J. Langmuir, 2004, 20: 7459

    13. [13]

      13. Yang, X.; Verruto, V. J.; Kilpatrick, P. K. Energy Fuels, 2007, 21: 1343

    14. [14]

      14. Sun, T. L.; Zhang, L.;Wang, Y. Y.; Zhao, S.; Yu, J. Y. Chem. J. Chin. Univ., 2003, 24: 2243 [孙涛垒,张路, 王宜阳,赵濉, 俞稼镛. 高等学校化学学报, 2003, 24: 2243]

    15. [15]

      15. Sun, T. L.; Peng, B.; Xu, Z. M.; Zhang, L.; Zhao, S.; Li, M. Y.; Yu, J. Y. Acta Phys. -Chim. Sin., 2002, 18: 161 [孙涛垒,彭勃,许志明,张路,赵濉,李明远,俞稼镛.物理化学学报, 2002, 18: 161]

    16. [16]

      16. Sun, T. L.; Zhang, L.;Wang, Y. Y.; Peng, B.; Zhao, S.; Li, M. Y.; Yu, J. Y. J. Dispersion Sci. Technol., 2003, 24: 699

    17. [17]

      17. Sun, T. L.; Zhang, L.;Wang, Y. Y.; Zhao, S.; Peng, B.; Li, M. Y.; Yu, J. Y. J. Colloid Interface Sci., 2002, 255: 241

    18. [18]

      18. Zhang, L.; Yan, F.; Wang, X. C.; Luo, L.; Zhang, L.; Zhao, S.; Yu, J. Y. J. Dispersion Sci. Technol., 2009, 30: 250

    19. [19]

      19. Zhang, L.; Wang, X. C.; Yan, F.; Luo, L.; Zhang, L.; Zhao, S.; Yu, J. Y. Colloid Polym. Sci., 2008, 286: 1291

    20. [20]

      20. Wang, D. X.; Luo, L.; Zhang, L.; Zhao, S.; Wang, L.; ng, Q. T.; Liao, L.; Chu, Y. P.; Yu, J. Y. J. Dispersion Sci. Technol., 2007, 28: 725

    21. [21]

      21. Luo, L.; Wang, D. X.; Zhang, L.; Zhao, S.; Yu, J. Y. J. Dispersion Sci. Technol., 2007, 28: 263

    22. [22]

      22. Zhang, L.; Wang, X. C.; ng, Q. T.; Luo, L.; Zhang, L.; Zhao, S.; Yu, J. Y. Acta Phys. -Chim. Sin., 2007, 23: 1652 [张磊,王晓春,宫清涛,罗澜,张路,赵濉,俞稼镛.物理化学学报, 2007, 23: 1652]

    23. [23]

      23. Li, X. L.; Zhang, L.; ng, Q. T.; Zhang, L.; Zhao, S.; Yu, J. Y. Acta Phys. -Chim. Sin., 2010, 26: 631 [李秀兰, 张磊,宫清涛, 张路,赵濉,俞稼镛.物理化学学报, 2010, 26: 631]

    24. [24]

      24. Lucassen, J.; van den Tempel, M. J. Colloid Interface Sci., 1972, 41: 491

    25. [25]

      25. van den Tempel, M.; Lucassen-Reynders, E. H. Adv. Colloid Interface Sci., 1983, 18: 281

    26. [26]

      26. Wang, Y. Y.; Dai, Y. H.; Zhang, L.; Luo, L.; Chu, Y. P.; Zhao, S.; Li, M. Y.; Wang, E. J.; Yu, J. Y. Macromolecules, 2004, 37: 2930

    27. [27]

      27. Huang, Y. P.; Zhang, L.; Luo, L.; Zhao, S.; Yu, J. Y. J. Phys. Chem. B, 2007, 111: 5640

    28. [28]

      28. Verruto, V. J.; Le, R. K.; Kilpatrick, P. K. J. Phys. Chem. B, 2009, 113: 13788


  • 加载中
    1. [1]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    2. [2]

      Jiandong LiuZhijia ZhangKamenskii MikhailVolkov FilippEliseeva SvetlanaJianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 2308048-0. doi: 10.3866/PKU.WHXB202308048

    3. [3]

      Zhi DouHuiyu DuanYixi LinYinghui XiaMingbo ZhengZhenming Xu . High-Throughput Screening Lithium Alloy Phases and Investigation of Ion Transport for Solid Electrolyte Interphase Layer. Acta Physico-Chimica Sinica, 2024, 40(3): 2305039-0. doi: 10.3866/PKU.WHXB202305039

    4. [4]

      Changsheng AnTao Liu . Decoding SEI chemistry at the lithium-metal potential. Acta Physico-Chimica Sinica, 2025, 41(9): 100101-0. doi: 10.1016/j.actphy.2025.100101

    5. [5]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    6. [6]

      Yu PengJiawei ChenYue YinYongjie CaoMochou LiaoCongxiao WangXiaoli DongYongyao Xia . Tailored cathode electrolyte interphase via ethylene carbonate-free electrolytes enabling stable and wide-temperature operation of high-voltage LiCoO2. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-0. doi: 10.1016/j.actphy.2025.100087

    7. [7]

      Da WangXiaobin YinJianfang WuYaqiao LuoSiqi Shi . All-Solid-State Lithium Cathode/Electrolyte Interfacial Resistance: From Space-Charge Layer Model to Characterization and Simulation. Acta Physico-Chimica Sinica, 2024, 40(7): 2307029-0. doi: 10.3866/PKU.WHXB202307029

    8. [8]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(11): 0-0.

    9. [9]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    10. [10]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    11. [11]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    12. [12]

      Jingyi XieQianxi LüWeizhen QiaoChenyu BuYusheng ZhangXuejun ZhaiRenqing LüYongming ChaiBin Dong . Enhancing Cobalt―Oxygen Bond to Stabilize Defective Co2MnO4 in Acidic Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305021-0. doi: 10.3866/PKU.WHXB202305021

    13. [13]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    14. [14]

      Yanting HUANGHua XIANGMei PAN . Construction and application of multi-component systems based on luminous copper nanoclusters. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2075-2090. doi: 10.11862/CJIC.20240196

    15. [15]

      Bin HEHao ZHANGLin XUYanghe LIUFeifan LANGJiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161

    16. [16]

      Weicheng FengJingcheng YuYilan YangYige GuoGeng ZouXiaoju LiuZhou ChenKun DongYuefeng SongGuoxiong WangXinhe Bao . Regulating the High Entropy Component of Double Perovskite for High-Temperature Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(6): 2306013-0. doi: 10.3866/PKU.WHXB202306013

    17. [17]

      Hanmei LüXin ChenQifu SunNing ZhaoXiangxin Guo . Uniform Garnet Nanoparticle Dispersion in Composite Polymer Electrolytes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305016-0. doi: 10.3866/PKU.WHXB202305016

    18. [18]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    19. [19]

      Xianyong Lu Tao Hu . Developing an Innovative Inorganic Chemistry Teaching Model Based on Aerospace Specialty Characteristics. University Chemistry, 2025, 40(7): 127-131. doi: 10.12461/PKU.DXHX202409037

    20. [20]

      Xinran Zhang Siqi Liu Yichi Chen Qingli Zou Qinghong Xu Yaqin Huang . From Protein to Energy Storage Materials: Edible Gelatin Jelly Electrolyte. University Chemistry, 2025, 40(7): 255-266. doi: 10.12461/PKU.DXHX202408104

Metrics
  • PDF Downloads(1288)
  • Abstract views(3088)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return