Citation: DU Xuan, XU Sheng-Hua, SUN Zhi-Wei, AA Yan. Effect of the Hydrodynamic Radius of Colloid Microspheres on theEstimation of the Coagulation Rate Constant[J]. Acta Physico-Chimica Sinica, ;2010, 26(10): 2807-2812. doi: 10.3866/PKU.WHXB20100941 shu

Effect of the Hydrodynamic Radius of Colloid Microspheres on theEstimation of the Coagulation Rate Constant

  • Received Date: 2 April 2010
    Available Online: 27 September 2010

    Fund Project: 国家自然科学基金(10972217, 10932012) 和中国科学院知识创新工程(KJCX2-YW-L08) 资助项目 (10972217, 10932012) 和中国科学院知识创新工程(KJCX2-YW-L08)

  • Experimental values of the coagulation rate constant for colloidal particles are known to be much lower than the theoretical values. Only the particle's geometric radii are used in the theoretical derivation of coagulation rate constant. However, it should actually be the hydrodynamic radius (larger than the geometric radius) that determines the particles' diffusion speed and thus the coagulation rate. Therefore, it is one of the reasons that cause the experimental coagulation rate constant lower than the theoretical one. Many factors affect the hydrodynamic radius and among them the electric double layer can significantly swell the hydrodynamic radius, which lowers the coagulation rate. The thickness of the electric double layer changes with the ionic strength of the solution. To correct the error caused by ne-glecting the difference between the geometric and hydrodynamic radius, a correction factor, which is the ratio of geometric radius to hydrodynamic radius, is introduced in this study. The geometric radius and the hydrodynamic radius were determined by scanning electron microscopy (SEM) and dynamic light scattering (DLS), respectively. Two different sized polystyrene microspheres were used to investigate the effect of ionic strength on the difference between the experimental coagulation rates and the theoretical ones. The results show that for slow aggregation, the rate constant calculated by using the hydrodynamic radius can be lower than its theoretical value by about 8% for microspheres with radius of 30 nm. This difference decreases with the increase of ionic strength. The effect of the hydrodynamic radius on the coagulation rate is negligible for fast aggregation.

  • 加载中
    1. [1]

      1. Wang, G. T. Colloidal stability. Beijing: Science Press, 1990: 1-2 [王果庭.胶体稳定性.北京:科学出版社, 1990: 1-2]

    2. [2]

      2. Jiang, Z. B. Science Information, 2006, 11: 12 [姜兆波.科技信 息, 2006, 11: 12]

    3. [3]

      3. Hu, Q. Y.; Lan, Y. Q.; Xue, J. H. Soilds, 1996, 28: 290 [胡琼英, 兰叶青,薛家骅. 土壤, 1996, 28: 290]

    4. [4]

      4. Fan, X.; Guo, Z. R.; Hong, J. M.; Zhang, Y.; Zhang, J. N.; Gu, N. Nanotechnology, 2010, 21: 105602

    5. [5]

      5. Yue, L.; Tao, S. L.; Zhang, X. H.;Wu, S. K. Journal of Functional Polymers, 2005, 18: 248 [岳玲, 陶斯禄, 张晓宏,吴世康. 功能高分子学报, 2005, 18: 248]

    6. [6]

      6. Zhang, S. F.; Sun, L. L.; Xu, J. B.; Zhou, H.; Wen, H. Acta Phys. - Chim. Sin., 2010, 26: 57 [张胜飞, 孙丽丽,徐俊波,周涵, 温浩.物理化学学报, 2010, 26: 57]

    7. [7]

      7. Smoluchowski, M. Z. Phys. Chem., 1917, 92: 129

    8. [8]

      8. Elimelech, M.; Gre ry, J.; Jia, X.;Williams, R. A. Particle deposition and aggregation measurement, modelling and simulation. Amsterdam: Elsevier, 1995

    9. [9]

      9. Kruyt, R. H. Colloid science, Vol.1. Irreversible systems. Amsterdam: Elsevier, 1952

    10. [10]

      10. Adachi, Y. Adv. Colloid Interface Sci., 1995, 56: 1

    11. [11]

      11. Fukasawa, T.; Adachi, Y. J. Colloid Interface Sci., 2006, 304: 115

    12. [12]

      12. Folkersma, R.; Van Diemen, A. J.; Stein, H. N. J. Colloid Interface Sci., 1998, 206: 482

    13. [13]

      13. Folkersma, R.; Stein, H. N. J. Colloid Interface Sci., 1998, 206: 494

    14. [14]

      14. Folkersma, R.; Van Diemen, A. J.; Stein, H. N. Adv. Colloid Interface Sci., 1999, 83: 71

    15. [15]

      15. Krutzer, L. L. M.; Folkersma, R.; Van Diemen, A. J.; Stein, H. N. Adv. Colloid Interface Sci., 1993, 46: 59

    16. [16]

      16. Sun, Z. W.; Qiao, R. L. J. Colloid Interface Sci., 2000, 223: 126

    17. [17]

      17. Sun, Z. W.; Li, Y. M.; Xu, S. H.; Lou, L. R.; Dai, G. L.; Dong, X. Q. J. Colloid Interface Sci., 2001, 242: 158

    18. [18]

      18. Sun, Z. W.; Chen, Z. Y. Chin. Phys. Lett., 2003, 20: 1634

    19. [19]

      19. Liu, J.; Sun, Z. W.; AA, Y. Chin. Phys. Lett., 2005, 22: 3199

    20. [20]

      20. Xu, S. H.; Liu, J.; Sun, Z. W. J. Colloid Interface Sci., 2006, 304: 107

    21. [21]

      21. Sun, Z. W.; Liu, J.; Xu, S. H. Langmuir, 2006, 22: 4946

    22. [22]

      22. Sun, Z. W.; Xu, S. H.; Liu, J.; Li, Y. M.; Lou, L. R.; Xie, J. C. J. Chem. Phys., 2005, 122: 184904

    23. [23]

      23. Sun, Z. W.; Xu, S. H.; Dai, G. L.; Li, Y. M.; Lou, L. R.; Liu, Q. S.; Zhu, R. Z. J. Chem. Phys., 2003, 119: 2399

    24. [24]

      24. Sun, Z. W.; Liu, J.; Xu, S. H. Chin. Phys. Lett., 2005, 21: 2119

    25. [25]

      25. Li, X.; Xu, S. H.; Sun, Z. W. Acta Phys. -Chim. Sin., 2009, 25: 207 [李旭,徐升华, 孙祉伟. 物理化学学报, 2009, 25: 207]

    26. [26]

      26. Li, X.; Xu, S. H.; Sun, Z. W. Acta Phys. -Chim. Sin., 2009, 25: 2130 [李旭,徐升华,孙祉伟. 物理化学学报, 2009, 25: 2130]

    27. [27]

      27. Liu, J.; Xu, S. H.; Sun, Z. W. Langmuir, 2007, 23: 11451

    28. [28]

      28. Honig, E. P.; Roebersen, G. J.; Wiersema, P. H. J. Colloid Interface Sci., 1971, 36: 97

    29. [29]

      29. Happel, J.; Brenner, H. Lowreynolds number hydrodynamics. Dordrecht: Kluwer, 1991

    30. [30]

      30. Batchelor, G. K. J. Fluid Mech., 1976, 74: 1

    31. [31]

      31. Crocker, J. C. J. Chem. Phys., 1997, 106: 2837

    32. [32]

      32. Bhattacharya, S.; Blawzdziewicz, J.; Wajnryb, E. J. Fluid Mech., 2005, 541: 263

    33. [33]

      33. Kätzel, U.; Vorbau, M.; Stintz, M.; Gaudig, T. G.; Barthel, H. Part. Part. Syst. Charact., 2008, 25: 19

    34. [34]

      34. Zhang, Y. B.; Qi,W.; Su, R. X.; Yuan, S. X.; Jin, F. M.; He, Z. M. Chin. J. Anal. Chem., 2007, 35: 809 [章宇斌,齐崴, 苏荣欣, 袁素霞,靳凤民, 何志敏.分析化学, 2007, 35: 809]

    35. [35]

      35. odwin, J. W.; Hearn, J.; Ho, C. C.; Orrewill, R. H. Brit. Polym. J., 1973, 5: 347


  • 加载中
    1. [1]

      Zeyi Yan Ruitao Liu Xinyu Qi Yuxiang Zhang Lulu Sun Xiangyuan Li Anchao Feng . Exploration of Suspension Polymerization: Preparation and Fluorescence Stability of Perovskite Polystyrene Microbeads. University Chemistry, 2025, 40(4): 72-79. doi: 10.12461/PKU.DXHX202405110

    2. [2]

      Shuying Zhu Shuting Wu Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117

    3. [3]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    4. [4]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    5. [5]

      Ruoqian Zhang Chaoqun Mu Yali Hou Mingming Zhang . 四苯乙烯基多组分金属有机笼的构筑及其固态发光性能研究. University Chemistry, 2025, 40(8): 277-283. doi: 10.12461/PKU.DXHX202410027

    6. [6]

      Yichang Liu Li An Dan Qu Zaicheng Sun . “双碳”背景下的综合设计实验——以PbCrO4催化甲基蓝的光降解速率常数测定为例. University Chemistry, 2025, 40(6): 222-229. doi: 10.12461/PKU.DXHX202407105

    7. [7]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    8. [8]

      Qiang Zhou Pingping Zhu Wei Shao Wanqun Hu Xuan Lei Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064

    9. [9]

      Qi LiPingan LiZetong LiuJiahui ZhangHao ZhangWeilai YuXianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030

    10. [10]

      Xiaojun LiuLang QinYanlei Yu . Dynamic Manipulation of Photonic Bandgaps in Cholesteric Liquid Crystal Microdroplets for Applications. Acta Physico-Chimica Sinica, 2024, 40(5): 2305018-0. doi: 10.3866/PKU.WHXB202305018

    11. [11]

      Yuting BaiCenqi YanZhen LiJiaqiang QinPei Cheng . Preparation of High-Strength Polyimide Porous Films with Thermally Closed Pore Property by In Situ Pore Formation Method. Acta Physico-Chimica Sinica, 2024, 40(9): 2306010-0. doi: 10.3866/PKU.WHXB202306010

    12. [12]

      Shanghua LiMalin LiXiwen ChiXin YinZhaodi LuoJihong Yu . High-Stable Aqueous Zinc Metal Anodes Enabled by an Oriented ZnQ Zeolite Protective Layer with Facile Ion Migration Kinetics. Acta Physico-Chimica Sinica, 2025, 41(1): 100003-0. doi: 10.3866/PKU.WHXB202309003

    13. [13]

      Sumiya Akter DristyMd Ahasan HabibShusen LinMehedi Hasan JoniRutuja MandavkarYoung-Uk ChungMd NajibullahJihoon Lee . Exploring Zn doped NiBP microspheres as efficient and stable electrocatalyst for industrial-scale water splitting. Acta Physico-Chimica Sinica, 2025, 41(7): 100079-0. doi: 10.1016/j.actphy.2025.100079

    14. [14]

      Xuanzhu Huo Yixi Liu Qiyu Wu Zhiqiang Dong Chanzi Ruan Yanping Ren . Integrated Experiment of “Electrolytic Preparation of Cu2O and Gasometric Determination of Avogadro’s Constant: Implementation, Results, and Discussion: A Micro-Experiment Recommended for Freshmen in Higher Education at Various Levels Across the Nation. University Chemistry, 2024, 39(3): 302-307. doi: 10.3866/PKU.DXHX202308095

    15. [15]

      Ling Zhang Jing Kang . Turn Waste into Valuable: Preparation of High-Strength Water-Based Adhesives from Polymethylmethacrylate Wastes: a Comprehensive Chemical Experiments. University Chemistry, 2024, 39(2): 221-226. doi: 10.3866/PKU.DXHX202306075

    16. [16]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    17. [17]

      Xiutao XuChunfeng ShaoJinfeng ZhangZhongliao WangKai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-0. doi: 10.3866/PKU.WHXB202309031

    18. [18]

      Tong WANGQinyue ZHONGQiong HUANGWeimin GUOXinmei LIU . Mn-doped carbon quantum dots/Fe-doped ZnO flower-like microspheres heterojunction: Construction and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1589-1600. doi: 10.11862/CJIC.20250011

    19. [19]

      Ying Xiong Guangao Yu Lin Wu Qingwen Liu Houjin Li Shuanglian Cai Zhanxiang Liu Xingwen Sun Yuan Zheng Jie Han Xin Du Chengshan Yuan Qihan Zhang Jianrong Zhang Shuyong Zhang . Basic Operations and Specification Suggestions for Determination of Physical Constants of Organic Compounds. University Chemistry, 2025, 40(5): 106-121. doi: 10.12461/PKU.DXHX202503079

    20. [20]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

Metrics
  • PDF Downloads(1346)
  • Abstract views(3775)
  • HTML views(30)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return