Citation: FU Dong-Wei, CHENG Ke, PANG Shan, DU Zu-Liang. Solution Based Synthesis of ZnO/CdS Composite Nanorod Array Film and Its Photoelectric Properties[J]. Acta Physico-Chimica Sinica, ;2010, 26(09): 2575-2580. doi: 10.3866/PKU.WHXB20100930 shu

Solution Based Synthesis of ZnO/CdS Composite Nanorod Array Film and Its Photoelectric Properties

  • Received Date: 24 March 2010
    Available Online: 21 July 2010

    Fund Project: 国家自然科学基金(20773103,90306010,10874040)资助项目 (20773103,90306010,10874040)

  • Well-aligned ZnO/CdS composite nanorod array film was grown on an indium tin oxide (ITO) substrate by two-step chemical solution deposition method. The effects of CdS deposition time on the crystal structure, morphology, and photoelectric performance of the ZnO/CdS composite film were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), ultraviolet-visible absorption spectroscopy (UV-Vis), photoluminescence spectroscopy (PL), and surface photovoltage spectroscopy (SPS). Results showed that the absorbance of the composite film extended into the visible region compared with the bare ZnO nanorod arrays. SPS also showed a new response region corresponding to the absorption spectrum. This result indicated a remarkable photoelectric conversion efficiency improvement in the visible region. We also found that the SPS response intensity of the composite film decreased gradually above 383 nmwith an increase in CdS deposition time. However, the SPS response intensity increased below 383 nm. We interpreted this phenomenon using two distinct photoinduced charge generation and transfer mechanisms.

  • 加载中
    1. [1]

      1. Otsuka, A.; Funabiki, K.; Sugiyama, N.; Yoshida, T.; Minoura, H.; Matsui, M. Chemistry Letters, 2006, 35(6): 666

    2. [2]

      2. Zhang, Q. F.; Chou, T. P.; Russo, B.; Jenekhe, S. A.; Cao, G. Z. Angew. Chem. Int. Edit., 2008, 47: 2402

    3. [3]

      3. Zhang, Y. Z.; Wu, L. H.; Liu, Y. P.; Xie, E. Q. J. Phys. D-Appl. Phys., 2009, 42: 085105

    4. [4]

      4. Chu, J. B.; Huang, S. M.; Zhang, D. W.; Bian, Z. Q.; Li, X. D.; Sun, Z.; Yin, X. J. Appl. Phys. A, 2009, 95: 849

    5. [5]

      5. Hotchandani, S.; Kamat, P. V. J. Phys. Chem., 1992, 96: 6834

    6. [6]

      6. Ganesh, T.; Mane, R. S.; Cai, G.. Chang, J. H.; Han, S. H. J. Phys. Chem. C, 2009, 113: 7666

    7. [7]

      7. Dloczik, L.; Ileperuma, O.; Lauermann, I.; Peter, L.M.; Ponomarev, E. A.; Redmond, G.; Shaw, N. J.; Uhlendorf, I. J. Phys. Chem. B, 1997, 101: 10281

    8. [8]

      8. Duzhko, V.; Timoshenko, V. Y.; Koch, F.; Dittrich, T. Phys. Rev. B, 2001, 64: 075204

    9. [9]

      9. Pang, S.; Xie, T. F.; Zhang, Y.; Wei, X.; Yang, M.; Wang, D. J.;Du, Z. L. J. Phys. Chem. C, 2007, 111: 18417

    10. [10]

      10. Law, M.; Greene, L. E.; Johnson, J. C.; Saykally, R.; Yang, P. Nature Mater., 2005, 4: 455

    11. [11]

      11. Leschkies, K. S.; Divakar, R.; Basu, J.; Pommer, E. E.; Boercker, J. E.; Carter, C. B.; Kortshagen, U. R.; Norris, D. J.; Aydil, E. S. Nano Lett., 2007, 7(6): 1793

    12. [12]

      12. Cao, X.; Chen, P.; Guo, Y. J. Phys. Chem. C, 2008, 112: 20560

    13. [13]

      13. Tang, Y.; Hu, X.; Chen, M.; Luo, L.; Li, B.; Zhang, L. Electrochimica Acta, 2009, 54: 2742

    14. [14]

      14. Pasquier, A. D.; Chen, H.; Lu, Y. Appl. Phys. Lett., 2006, 89: 253513

    15. [15]

      15. Zaera, R. T.; Katty, A.; Bastide, S.; Clément, C. L. Chem. Mater., 2007, 19: 1626

    16. [16]

      16. Tak, Y.; Hong, S. J.; Lee, J. S.; Yong, K. Crystal Growth& Design, 2009, 9(6): 2627

    17. [17]

      17. Lee, W.; Min, S. K.; Dhas. V.; Ogale, S. B.; Han, S. H. Electrochemistry Communications, 2009, 11: 103

    18. [18]

      18. Greene, L. E.; Law, M.; Tan, D. H.; Montano, M.; ldberger, J.; Somorjai, G.; Yang, P. Nano Lett., 2005, 5(7): 1231

    19. [19]

      19. Cheng, K.; Cheng, G.; Wang, S.; Li, L.; Dai, S.; Zhang, X.; Zou, B.; Du, Z. New Journal of Physics, 2007, 9: 214

    20. [20]

      20. Xu, D.; Gao, A. M.; Deng, W. L. Acta Phys. -Chim. Sin., 2008, 24 (7): 1219 [许迪, 高爱梅,邓文礼.物理化学学报, 2008, 24 (7): 1219]

    21. [21]

      21. Chang, C. H.; Lee, Y. L. Appl. Phys. Lett., 2007, 91: 053503

    22. [22]

      22. Meng, X. Q.; Zhao, D. X.; Zhang, J. Y.; Shen, D. Z.; Lu, Y. M.; Fan, X.W.; Wang, X. H. Materials Letters, 2007, 61: 3535

    23. [23]

      23. Han, D.; Zhang, S. C. Acta Phys. -Chim. Sin., 2008, 24(3): 539 [韩冬,张树朝. 物理化学学报, 2008, 24(3): 539]

    24. [24]

      24. Geng, B. Y.; Wang, G. Z.; Jiang, Z.; Xie, T.; Sun, S. H.; Meng, G. W.; Zhang, D. L. Appl. Phys. Lett., 2003, 82(26): 4791

    25. [25]

      25. Wei, Q.; Li, M. K.; Yang, Z.; Cao, L.; Zhang,W.; Liang, H. W. Acta Phys. -Chim. Sin., 2008, 24(5): 793 [魏强,李梦轲,杨志, 曹璐,张威, 梁红伟.物理化学学报, 2008, 24(5): 793]

    26. [26]

      26. Kronik, L.; Shapira, Y. Surface Science Reports, 1999, 37: 1

    27. [27]

      27. de Souza, C. F.; Ruda, H. E.; Fafard, S. Journal of Electroanalytical Chemistry, 2003, 559: 49

    28. [28]

      28. Cheng, K.; He, Y. P.; Miao, Y. M.; Zou, B. S.; Wang, Y. G.; Wang, T. H.; Zhang, X. T.; Du, Z. L. J. Phys. Chem. B, 2006, 110: 7259

    29. [29]

      29. Ji, Y. L.; Cheng, K.; Zhang, H. M.; Zhang, X. T.; Li, Y. C.; Du, Z. L. Chinese Science Bulletin, 2008, 53(1): 46

    30. [30]

      30. Belaidi, A.; Dittrich, T.; Kieven, D.; Tornow, J.; Schwarzburg, K.; Kunst, M.; Allsop, N.; Lux-Steiner, M. C.; Gavrilov, S. Solar Energy Materials&Solar Cells, 2009, 93: 1033


  • 加载中
    1. [1]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    2. [2]

      Chongjing LiuYujian XiaPengjun ZhangShiqiang WeiDengfeng CaoBeibei ShengYongheng ChuShuangming ChenLi SongXiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 2309036-0. doi: 10.3866/PKU.WHXB202309036

    3. [3]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    4. [4]

      Weilai YuChuanbiao Bie . Unveiling S-Scheme Charge Transfer Mechanism. Acta Physico-Chimica Sinica, 2024, 40(4): 2307022-0. doi: 10.3866/PKU.WHXB202307022

    5. [5]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    6. [6]

      You WuChang ChengKezhen QiBei ChengJianjun ZhangJiaguo YuLiuyang Zhang . Efficient Photocatalytic Production of H2O2 over ZnO/D-A Conjugated Polymer S-scheme Heterojunction and Charge Transfer Dynamics Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-0. doi: 10.3866/PKU.WHXB202406027

    7. [7]

      Jian LiYu ZhangRongrong YanKaiyuan SunXiaoqing LiuZishang LiangYinan JiaoHui BuXin ChenJinjin ZhaoJianlin Shi . Highly Efficient, Targeted, and Traceable Perovskite Nanocrystals for Photoelectrocatalytic Oncotherapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-0. doi: 10.1016/j.actphy.2024.100042

    8. [8]

      Yang MeiqingLu WangHaozi LuYaocheng YangSong Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 2310046-0. doi: 10.3866/PKU.WHXB202310046

    9. [9]

      Huasen LuShixu SongQisen JiaGuangbo LiuLuhua Jiang . Advances in Cu2O-based Photocathodes for Photoelectrochemical Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(2): 2304035-0. doi: 10.3866/PKU.WHXB202304035

    10. [10]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    11. [11]

      Xuexia He Zhibin Lei Pei Chen Qi Li Weiyu Deng Peng Hu . 以“溶度积规则”指导电荷转移共晶沉淀析出——材料类专业无机化学教学改革案例. University Chemistry, 2025, 40(8): 1-10. doi: 10.12461/PKU.DXHX202410099

    12. [12]

      Yajuan XingHui XueJing SunNiankun GuoTianshan SongJiawen SunYi-Ru HaoQin Wang . Cu3P-Induced Charge-Oriented Transfer and Surface Reconstruction of Ni2P to Achieve Efficient Oxygen Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(3): 2304046-0. doi: 10.3866/PKU.WHXB202304046

    13. [13]

      Xingchao ZhaoXiaoming LiMing LiuZijin ZhaoKaixuan YangPengtian LiuHaolan ZhangJintai LiXiaoling MaQi YaoYanming SunFujun Zhang . Photomultiplication-Type All-Polymer Photodetectors and Their Applications in Photoplethysmography Sensor. Acta Physico-Chimica Sinica, 2025, 41(1): 100007-0. doi: 10.3866/PKU.WHXB202311021

    14. [14]

      Pengcheng YanPeng WangJing HuangZhao MoLi XuYun ChenYu ZhangZhichong QiHui XuHenan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 2309047-0. doi: 10.3866/PKU.WHXB202309047

    15. [15]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    16. [16]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    17. [17]

      Yuhang ZhangWeiwei ZhaoHongwei LiuJunpeng Lü . Progress on Self-Powered Photodetectors Based on Low-Dimensional Materials. Acta Physico-Chimica Sinica, 2025, 41(3): 2310004-0. doi: 10.3866/PKU.WHXB202310004

    18. [18]

      Yao MaXin ZhaoHongxu ChenWei WeiLiang Shen . Progress and Perspective of Perovskite Thin Single Crystal Photodetectors. Acta Physico-Chimica Sinica, 2025, 41(4): 2309045-0. doi: 10.3866/PKU.WHXB202309045

    19. [19]

      Zehao ZhangZheng WangHaibo Li . Preparation of 2D V2O3@Pourous Carbon Nanosheets Derived from V2CFx MXene for Capacitive Desalination. Acta Physico-Chimica Sinica, 2024, 40(8): 2308020-0. doi: 10.3866/PKU.WHXB202308020

    20. [20]

      Peng LiYuanying CuiZhongliao WangGraham DawsonChunfeng ShaoKai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-0. doi: 10.1016/j.actphy.2025.100065

Metrics
  • PDF Downloads(1219)
  • Abstract views(2912)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return