Citation: ZHENG Xiao-Juan, ZHOU Ya-Fen, FU Hai-Yan, CHEN Hua, LI Xian-Jun, LI Rui-Xiang. Activation Factors for the Carboxyl Group in the Hydrogenation of Carboxylic Esters[J]. Acta Physico-Chimica Sinica, ;2010, 26(10): 2699-2704. doi: 10.3866/PKU.WHXB20100920 shu

Activation Factors for the Carboxyl Group in the Hydrogenation of Carboxylic Esters

  • Received Date: 29 April 2010
    Available Online: 27 September 2010

    Fund Project: 国家自然科学基金(21072138)资助项目 (21072138)

  • We prepared a 4%Ru-9%La/γ-Al2O3 catalyst by impregnation method and characterized it using X-ray diffraction(XRD) ,X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). The catalyst was used for the hydrogenation of methyl propionate. The effects of solvent, inorganic salt additive, steric as well as electronic factors of the substrate on the hydrogenation of a carboxylic ester were investigated. We found that both water and the Co(NO3)2 additive obviously improved the hydrogenation of methyl propionate, the conversion of the substrate and the selectivity for propanol. The promotional effects of water and Co2+ are attributed to polarization of the C=O bond in the carboxyl group of the substrate molecule by the formation of a hydrogen bond between water and the carboxylic group and the coordination of Co2+ to the carboxylic group. This is favorable for an attack on the carbon atom of the carboxyl group by the activated hydrogen. Similarly, the electron -withdrawing group in the substrate molecule also caused the high positive charge of carbon in the carboxyl group. The highly positive charged carbon is beneficial for the hydrogenation reaction. In addition, an increase in the steric hindrance of the substrate molecules was not favorable for the adsorption of the substrate on the catalyst and, therefore, the reaction rate decreased.

  • 加载中
    1. [1]

      1. McAlees, A. J. J. Chem. Soc. C, 1969: 2425

    2. [2]

      2. Rieke, R. D.; Thakur, D. S.; Roberts, B. D.; White, G. T. J. Am. Oil Chem. Soc., 1997, 74(4): 333

    3. [3]

      3. Zhu, J. F. Preparation and characterization of middle-pressure hydrogenation catalyst for fatty acid methyl esters[D]. Qingdao: China University of Petroleum(East China), 2007 [朱建锋.脂肪 酸甲酯中压加氢催化剂制备与表征[D]. 青岛: 中国石油大学 (华东), 2007]

    4. [4]

      4. Luo, G.; Yan, S. R.; Qiao, M. H.; Zhang, J. H.; Fan, K. N. Appl. Catal. A: Gen., 2004, 275: 95

    5. [5]

      5. Bournonville, J. P.; Mabilon, G.; Candy, J. P.; Basset, J. M. J. Mol. Catal., 1991, 67: 283

    6. [6]

      6. Corradini, S. A. S.; Lenzi, G. G.; Lenzi, M. K.; Soares, C. M. F.; Santos, O. A. A. Journal of Non-Crystalline Solids, 2008, 354: 4865

    7. [7]

      7. Silva, A. M.; Morales, M. A.; Baggio-Saitovitch, E. M.; Jordão, E.; Fraga, M. A. Appl. Catal. A-Gen., 2009, 353: 101

    8. [8]

      8. Piccirilli, A.; Pouilloux, Y.; Pronier, S.; Barrault, J. Bull. Soc. Chim. France, 1995, 132: 1109

    9. [9]

      9. Pouilloux, Y.; Autin, F.; Barrault, J. Catal. Today, 2000, 63: 87

    10. [10]

      10. Silva, A. M.; Santos, O. A. A.; Morales, M. A.; Baggio-Saitovitch, E. M.; Jordão, E.; Fraga, M. A. J. Mol .Catal. A, 2006, 253: 62

    11. [11]

      11. Santos, S. M.; Silva, A. M.; Jordão, E.; Fraga, M. A. Catal. Today, 2005, 107-108: 250

    12. [12]

      12. Miyake, T.; Makino, T.; Taniguchi, S. I.; Watanuki, H.; Niki, T.; Shimizu, S.; Kojima, Y.; Sano, M. Appl. Catal. A-Gen., 2009, 364: 108

    13. [13]

      13. Pouilloux, Y.; Autin, F.; Guimon, C.; Barrault, J. J. Catal., 1998, 176: 215

    14. [14]

      14. Zhou, Y. F.; Fu, H. Y.; Zheng, X. J.; Li, R. X.; Chen, H.; Li, X. J. Catal. Commun., 2009, 11: 137

    15. [15]

      15. Hu, S. C.; Chen, Y. W. J. Chem. Technol. Biotechnol., 2001, 76: 954

    16. [16]

      16. Okada, K.; Nagashima, T.; Kameshima, Y.; Yasumori, A.; Tsukada, T. J. Colloid Interface Sci., 2002, 253: 308

    17. [17]

      17. Chen, X. Y.; Lee, S. W. Chem. Phys. Lett., 2007, 438: 279

    18. [18]

      18. Wang, J. Q.; Wang, Y. Z.; Xie, S. H.; Qiao, M. H.; Li, H. X.; Fan, K. N. Appl. Catal. A, 2004, 272: 29

    19. [19]

      19. Fleisch, T. H.; Hicks, R. F.; Bell, A. T. J. Catal., 1984, 87: 398

    20. [20]

      20. Struijk, J.; Scholten, J. J. F. Appl. Catal. A, 1992, 82: 277

    21. [21]

      21. Wehner, P. S.; Gustafson, B. L. J. Catal., 1992, 135: 420

    22. [22]

      22. Clapham, S. E.; Hadzovic, A.; Morris, R. H. Coord. Chem. Rev., 2004, 248: 2201

    23. [23]

      23. Nomura, K.; Ogura, H.; Imanishi, Y. J. Mol. Catal. A, 2001, 166: 345

    24. [24]

      24. Zuo, B. J.;Wang, Y.;Wang, Q. L.; Zhang, J. L.; Wu, N. Z.; Peng, L. D. J. Catal., 2004, 222: 493

    25. [25]

      25. Xu, Q.; Liu, X. M.; Chen, J. R.; Li, R. X.; Li, X. J. J. Mol. Catal. A- Chem., 2006, 260: 299


  • 加载中
    1. [1]

      Hui WangAbdelkader LabidiMenghan RenFeroz ShaikChuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039

    2. [2]

      Qiqi LiSu ZhangYuting JiangLinna ZhuNannan GuoJing ZhangYutong LiTong WeiZhuangjun Fan . Preparation of High Density Activated Carbon by Mechanical Compression of Precursors for Compact Capacitive Energy Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-0. doi: 10.3866/PKU.WHXB202406009

    3. [3]

      Fa Wang Yu Chen Hui Chao . Ruthenium(II) Complexes as Photoactivated Chemo-Prodrugs for Hypoxic Tumor Therapy. University Chemistry, 2025, 40(7): 200-212. doi: 10.12461/PKU.DXHX202410024

    4. [4]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    5. [5]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    6. [6]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    7. [7]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    8. [8]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    9. [9]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    10. [10]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    11. [11]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    12. [12]

      Chengpeng Liu Yinxia Fu . Design and Practice of Ideological and Political Education for the Public Elective Course “Life Chemistry Experiment” in Universities. University Chemistry, 2024, 39(10): 242-248. doi: 10.12461/PKU.DXHX202404064

    13. [13]

      Xue-Peng Zhang Yuchi Long Yushu Pan Jiding Wang Baoyu Bai Rui Ding . 定量构效关系方法学习探索:以钴卟啉活化氧气为例. University Chemistry, 2025, 40(8): 345-359. doi: 10.12461/PKU.DXHX202410107

    14. [14]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    15. [15]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    16. [16]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    17. [17]

      Yongqing XuYuyao YangMengna WuXiaoxiao YangXuan BieShiyu ZhangQinghai LiYanguo ZhangChenwei ZhangRobert E. PrzekopBogna SztorchDariusz BrzakalskiHui Zhou . Review on Using Molybdenum Carbides for the Thermal Catalysis of CO2 Hydrogenation to Produce High-Value-Added Chemicals and Fuels. Acta Physico-Chimica Sinica, 2024, 40(4): 2304003-0. doi: 10.3866/PKU.WHXB202304003

    18. [18]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    19. [19]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    20. [20]

      Hailian TangSiyuan ChenQiaoyun LiuGuoyi BaiBotao QiaoLiu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004

Metrics
  • PDF Downloads(1282)
  • Abstract views(3126)
  • HTML views(16)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return