Citation: ZOU Yan, WANG Jia, ZHENG Ying-Ying. Electrochemical Corrosion Behaviors of Rusted Carbon Steel[J]. Acta Physico-Chimica Sinica, ;2010, 26(09): 2361-2368. doi: 10.3866/PKU.WHXB20100825 shu

Electrochemical Corrosion Behaviors of Rusted Carbon Steel

  • Received Date: 21 February 2010
    Available Online: 25 June 2010

    Fund Project: 国家自然科学基金(50971118)资助项目 (50971118)

  • Electrochemical methods including polarization curves, linear polarization resistance (LPR), and electrochemical impedance spectroscopy (EIS) were used to characterize and investigate the electrochemical behavior of rusted carbon steel immersed in seawater. Results indicate that the inner rust layer that forms on the surface of the carbon steel after long-term immersion greatly affects the electrode process. Polarization resistance (Rp), determined by LPR and EIS, increases during the initial immersion period. After long-term immersion, it decreases. Rp initially increases and then decreases gradually with immersion time. The electrochemical characteristics of the rusted carbon steel were studied by removing the outer and inner rust layers. The materials were analyzed by Fourier transform infrared (FTIR) spectroscopy and their cross-sectional morphologies were obtained to determine the cause. The results show that the β-FeOOH, which exists in the inner rust layer, has high electrochemical activity. Its content increases with the growth of the inner rust layer. In the electrochemical tests, even a small amount of polarization allows β-FeOOH to participate in the cathodic reduction reaction. Besides the anodic dissolution of iron and the cathodic reduction of oxygen, rust reduction is also possible. For this reason, the cathodic reaction rate is promoted and Rp decreases.

  • 加载中
    1. [1]

      1. Hou, B. R. Oceanologia et Limnologia Sinica, 1995, 26(5): 514 [侯保荣.海洋与湖沼, 1995, 26(5): 514]

    2. [2]

      2. Bousselmi, L.; Fiaud, C.; Tribollets, B.; Triki, E. Corrosion Sci., 1997, 39(9): 1711

    3. [3]

      3. Duan, J. Z.;Wu, S. R.; Zhang, X. J.; Huang, G. Q.; Du, M.; Hou, B. R. Electrochim. Acta, 2008, 54(1): 22

    4. [4]

      4. García, K. E.; Morales, A. L.; Barrero, C. A.; Greneche, J. M. Corrosion Sci., 2006, 48(9): 2813

    5. [5]

      5. Ma, Y. T.; Li, Y.;Wang, F. H. Mater. Chem. Phys., 2008, 112(3): 844

    6. [6]

      6. Yamashita, M.; Miyuki, H.; Matsuda, Y.; Nagano, H.; Misawa, T. Corrosion Sci., 1994, 36(2): 283

    7. [7]

      7. Stratmann, M.; Müller, J. Corrosion Sci., 1994, 36(2): 327

    8. [8]

      8. Stratmann, M.; Bohnenkamp, K.; Engell, H. J. Corrosion Sci., 1983, 23(9): 969

    9. [9]

      9. Stratmann, M.; HoVmann, K. Corrosion Sci., 1989, 29(11-12): 1329

    10. [10]

      10. Stratmann, M.; Streckel, H. Corrosion Sci., 1990, 30(6-7): 697

    11. [11]

      11. Nishimura, T.; Tanaka, I.; Shimizu, Y. Tetsu-to-Hagane, 1995, 81: 1079

    12. [12]

      12. Andrade, C.; Keddam, M.; Nóvoa, X. R.; Pérez, M. C.; Rangel, C. M.; Takenouti, H. Electrochim. Acta, 2001, 46(24-25): 3905

    13. [13]

      13. nzález, J. A.; Miranda, J. M.; Otero, E.; Feliu, S. Corrosion Sci., 2007, 49(2): 436

    14. [14]

      14. Flis, J.; Pickering, H.W.; Osseo-Asare, K. Electrochim. Acta, 1998, 43(12-13): 1921

    15. [15]

      15. Videm, K. Electrochim. Acta, 2001, 46(24-25): 3895

    16. [16]

      16. Panda, B.; Balasubramaniam, R.; Dwivedi, G. Corrosion Sci., 2008, 50(6): 1684

    17. [17]

      17. Bousselmi, L.; Fiaud, C.; Tribollet, B.; Triki, E. Electrochim. Acta, 1999, 44(24): 4357

    18. [18]

      18. Antony, H.; Perrin, S.; Dillmann, P.; Legrand, L.; Chaussé, A. Electrochim. Acta, 2007, 52(27): 7754

    19. [19]

      19. Lair, V.; Antony, H.; Legrand, L.; Chaussé, A. Corrosion Sci., 2006, 48(8): 2050


  • 加载中
    1. [1]

      Ru SONGBiao WANGChunling LUBingbing NIUDongchao QIU . Electrochemical properties of stable and highly active PrBa0.5Sr0.5Fe1.6Ni0.4O5+δ cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 639-649. doi: 10.11862/CJIC.20240397

    2. [2]

      Yang Wang Yunpeng Fu Xiaoji Liu Guotao Zhang Guobin Li Wanqiang Liu Jinglun Wang . Structural Analysis of Nitrile Solutions Based on Infrared Spectroscopy Probes. University Chemistry, 2025, 40(4): 367-374. doi: 10.12461/PKU.DXHX202406113

    3. [3]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    4. [4]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    5. [5]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    6. [6]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    7. [7]

      Hong Yan Wenfeng Wang Keyin Ye Yaofeng Yuan . Organic Electrochemistry and Its Integration into Chemistry Teaching. University Chemistry, 2025, 40(5): 301-310. doi: 10.12461/PKU.DXHX202407027

    8. [8]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    9. [9]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    10. [10]

      Shuhui Li Xucen Wang Yingming Pan . Exploring the Role of Electrochemical Technologies in Everyday Life. University Chemistry, 2025, 40(3): 302-307. doi: 10.12461/PKU.DXHX202406059

    11. [11]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    12. [12]

      Yingying Chen Di Xu Congmin Wang . Exploration and Practice of the “Four-Level, Three-Linkage” General Chemistry Course System. University Chemistry, 2024, 39(8): 119-125. doi: 10.3866/PKU.DXHX202401057

    13. [13]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    14. [14]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    15. [15]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    16. [16]

      Renxiu Zhang Xin Zhao Yunfei Zhang . Application of Electrochemical Synthesis in the Teaching of Organic Chemistry. University Chemistry, 2025, 40(4): 174-180. doi: 10.12461/PKU.DXHX202406116

    17. [17]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    18. [18]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    19. [19]

      Yong Zhou Jia Guo Yun Xiong Luying He Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109

    20. [20]

      Zhengli Hu Jia Wang Yi-Lun Ying Shaochuang Liu Hui Ma Wenwei Zhang Jianrong Zhang Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072

Metrics
  • PDF Downloads(1559)
  • Abstract views(2728)
  • HTML views(14)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return